ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we review some of our recent experimental and theoretical results on transport and thermodynamic properties of heavy-fermion alloys Ce(1-x)Yb(x)CoIn5. Charge transport measurements under magnetic field and pressure on these single cryst alline alloys revealed that: (i) relatively small Yb substitution suppresses the field induced quantum critical point, with a complete suppression for nominal Yb doping x>0.20; (ii) the superconducting transition temperature Tc and Kondo lattice coherence temperature T* decrease with x, yet they remain finite over the wide range of Yb concentrations; (iii) both Tc and T* increase with pressure; (iv) there are two contributions to resistivity, which show different temperature and pressure dependences, implying that both heavy and light quasiparticles contribute to inelastic scattering. We also analyzed theoretically the pressure dependence of both T* and Tc within the composite pairing theory. In the purely static limit, when we ignore the lattice dynamics, we find that the composite pairing mechanism necessarily causes opposite behaviors of T* and Tc with pressure: if T* grows with pressure, Tc must decrease with pressure and vice versa.
76 - S. Jang , B. D. White , I. K. Lum 2014
Measurements of physical properties show that Yb enters the single crystals systematically and in registry with the nominal Yb concentration x of the starting material dissolved in the molten indium flux.
42 - K. Huang , L. Shu , I. K. Lum 2014
We report measurements of electrical resistivity, magnetic susceptibility, specific heat, and thermoelectric power on the system Pr1-xCexPt4Ge12. Superconductivity is suppressed with increasing Ce concentration up to x = 0.5, above which there is no evidence for superconductivity down to 1.1 K. The Sommerfeld coefficient {gamma} increases with increasing x from 48 mJ/mol K^2 up to 120 mJ/mol K^2 at x = 0.5, indicating an increase in strength of electronic correlations. The temperature dependence of the specific heat at low temperatures evolves from roughly T^3 for x = 0 to e^(-Delta /T) behavior for x = 0.05 and above, suggesting a crossover from a nodal to a nodeless superconducting energy gap or a transition from multiband to single-band superconductivity. Fermi-liquid behavior is observed throughout the series in low-temperature magnetization, specific heat, and electrical resistivity measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا