ترغب بنشر مسار تعليمي؟ اضغط هنا

We obtain in exact arithmetic the order 24 linear differential operator $L_{24}$ and right hand side $E^{(5)}$ of the inhomogeneous equation$L_{24}(Phi^{(5)}) = E^{(5)}$, where $Phi^{(5)} =tilde{chi}^{(5)}-tilde{chi}^{(3)}/2+tilde{chi}^{(1)}/120$ is a linear combination of $n$-particle contributions to the susceptibility of the square lattice Ising model. In Bostan, et al. (J. Phys. A: Math. Theor. {bf 42}, 275209 (2009)) the operator $L_{24}$ (modulo a prime) was shown to factorize into $L_{12}^{(rm left)} cdot L_{12}^{(rm right)}$; here we prove that no further factorization of the order 12 operator $L_{12}^{(rm left)}$ is possible. We use the exact ODE to obtain the behaviour of $tilde{chi}^{(5)}$ at the ferromagnetic critical point and to obtain a limited number of analytic continuations of $tilde{chi}^{(5)}$ beyond the principal disk defined by its high temperature series. Contrary to a speculation in Boukraa, et al (J. Phys. A: Math. Theor. {bf 41} 455202 (2008)), we find that $tilde{chi}^{(5)}$ is singular at $w=1/2$ on an infinite number of branches.
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is suffi cient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the depleted series $Phi^{(6)}=tilde{chi}^{(6)} - {2 over 3} tilde{chi}^{(4)} + {2 over 45} tilde{chi}^{(2)}$. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The depleted differential operator is shown to have a structure similar to the corresponding operator for $tilde{chi}^{(5)}$. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral $E$. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.
Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their `concavity index, $m$. Such polygons are called emph{$m$-convex} polygons and are characterised by having up to $ m$ indentations in their perimeter. We first describe how we conjectured the (isotropic) generating function for the case $m=2$ using a numerical procedure based on series expansions. We then proceed to prove this result for the more general case of the full anisotropic generating function, in which steps in the $x$ and $y$ direction are distinguished. In so doing, we develop tools that would allow for the case $m > 2$ to be studied. %In our proof we use a `divide and conquer approach, factorising 2-convex %polygons by extending a line along the base of its indents. We then use %the inclusion-exclusion principle, the Hadamard product and extensions to %known methods to derive the generating functions for each case.
Polygons are described as almost-convex if their perimeter differs from the perimeter of their minimum bounding rectangle by twice their `concavity index, $m$. Such polygons are called emph{$m$-convex} polygons and are characterised by having up to $ m$ indentations in the side. We use a `divide and conquer approach, factorising 2-convex polygons by extending a line along the base of its indents. We then use the inclusion-exclusion principle, the Hadamard product and extensions to known methods to derive the generating functions for each case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا