ترغب بنشر مسار تعليمي؟ اضغط هنا

A detection technique of ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy electrons left after the passage of the showers in the atmosphere. T he emission mechanism is expected from quasi-elastic collisions of electrons produced in the shower by the ionisation of the molecules in the atmosphere. In this article, a detailed calculation of the spectral intensity of photons at ground level originating from the transitions between unquantised energy states of free ionisation electrons is presented. In the absence of absorption of the emitted photons in the plasma, the obtained spectral intensity is shown to be 5 10^{-26} W m^{-2}Hz^{-1} at 10 km from the shower core for a vertical shower induced by a proton of 10^{17.5} eV.
A search for muon neutrinos in coincidence with gamma-ray bursts with the ANTARES neutrino detector using data from the end of 2007 to 2011 is performed. Expected neutrino fluxes are calculated for each burst individually. The most recent numerical c alculations of the spectra using the NeuCosmA code are employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 gamma-ray bursts in the given period is optimised using an extended maximum-likelihood strategy. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model.
A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neut rino telescope is sensitive to TeV--PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of p ossible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The $90%$ CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are competitive with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section.
In this paper, a time integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutri no flux have been obtained. Assuming an $E_{ u}^{-2}$ spectrum, these flux limits are at $1-10times10^{-8}$ GeV cm$^{-2}$ s$^{-1}$ for declinations ranging from $-90^{circ}$ to 40$^{circ}$. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscil lations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of $Delta m_{32}^2=(3.1pm 0.9)cdot 10^{-3}$ eV$^2$ is obtained, in good agreement with the world average value.
The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. It is located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore. The scientific scope of the experiment is very broad, bein g the search for astrophysical neutrinos the main goal. In this paper we collect the 22 contributions of the ANTARES collaboration to the 32nd International Cosmic Ray Conference (ICRC 2011). At this stage of the experiment the scientific output is very rich and the contributions included in these proceedings cover the main physics results (steady point sources, correlations with GRBs, diffuse fluxes, target of opportunity programs, dark matter, exotic physics, oscillations, etc.) and some relevant detector studies (water optical properties, energy reconstruction, moon shadow, accoustic detection, etc.)
The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost direc tly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.
The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements.
The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earths atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا