ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Cosmic Neutrino Point Sources with Four Years of Data from the ANTARES Telescope

127   0   0.0 ( 0 )
 نشر من قبل Claudio Bogazzi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a time integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an $E_{ u}^{-2}$ spectrum, these flux limits are at $1-10times10^{-8}$ GeV cm$^{-2}$ s$^{-1}$ for declinations ranging from $-90^{circ}$ to 40$^{circ}$. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.



قيم البحث

اقرأ أيضاً

We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a win dow in the Southern sky where the sensitivity to point sources improves by up to a factor of two compared to individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the Southern sky and from a pre-selected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for $E^{-2.5}$ and $E^{-2}$ power-law spectra with different energy cut-offs.
A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates RA=$-$46.8$^{circ}$ and Dec=$-$64.9$^{circ}$ and corresponds to a 2.2$sigma$ background fluctuation. In addition, upper limits on the flux normalization of an E$^{-2}$ muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of 7 events relatively close to the Galactic Centre in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E$^{-2}$ energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1$times$10$^{-8}$ GeV$,$cm$^{-2}$s$^{-1}$, depending on the exact location of the source.
Results are presented of a search for cosmic sources of high energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 +/- 0.1 degrees. The neutrino flux sensitivity is 7.5 x 10-8 ~ (E/GeV)^-2 GeV^-1 s^-1 cm^-2 for the part of the sky that is always visible (declination < -48 degrees), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detec tion from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.
The IceCube Collaboration has observed a high-energy astrophysical neutrino flux and recently found evidence for neutrino emission from the blazar TXS 0506+056. These results open a new window into the high-energy universe. However, the source or sou rces of most of the observed flux of astrophysical neutrinos remains uncertain. Here, a search for steady point-like neutrino sources is performed using an unbinned likelihood analysis. The method searches for a spatial accumulation of muon-neutrino events using the very high-statistics sample of about $497,000$ neutrinos recorded by IceCube between 2009 and 2017. The median angular resolution is $sim1^circ$ at 1 TeV and improves to $sim0.3^circ$ for neutrinos with an energy of 1 PeV. Compared to previous analyses, this search is optimized for point-like neutrino emission with the same flux-characteristics as the observed astrophysical muon-neutrino flux and introduces an improved event-reconstruction and parametrization of the background. The result is an improvement in sensitivity to the muon-neutrino flux compared to the previous analysis of $sim35%$ assuming an $E^{-2}$ spectrum. The sensitivity on the muon-neutrino flux is at a level of $E^2 mathrm{d} N /mathrm{d} E = 3cdot 10^{-13},mathrm{TeV},mathrm{cm}^{-2},mathrm{s}^{-1}$. No new evidence for neutrino sources is found in a full sky scan and in an a priori candidate source list that is motivated by gamma-ray observations. Furthermore, no significant excesses above background are found from populations of sub-threshold sources. The implications of the non-observation for potential source classes are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا