ترغب بنشر مسار تعليمي؟ اضغط هنا

The Square Kilometre Array (SKA) is called to revolutionise essentially all areas of Astrophysics. With a collecting area of about a square kilometre, the SKA will be a transformational instrument, and its scientific potential will go beyond the inte rests of astronomers. Its technological challenges and huge cost requires a multinational effort, and Europe has recognised this by putting the SKA on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI). The Spanish SKA White Book is the result of the coordinated effort of 120 astronomers from 40 different research centers. The book shows the enormous scientific interest of the Spanish astronomical community in the SKA and warrants an optimum scientific exploitation of the SKA by Spanish researchers, if Spain enters the SKA project.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of radio-loud Active Galactic Nuclei. For a summary, we refer to the paper.
249 - I. Agudo 2014
Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.
NRAO 150 is a very bright millimeter to radio quasar at redshift $z$=1.52 for which ultra-high-resolution VLBI monitoring has revealed a counter-clockwise jet-position-angle wobbling at an angular speed $sim11^{circ}$/yr in the innermost regions of t he jet. In this paper we present new total and linearly polarized VLBA images at 43 GHz extending previous studies to cover the evolution of the jet in NRAO 150 between 2006 and early 2009. We propose a new scenario to explain the counter-clockwise rotation of the jet position angle based on a helical motion of the components in a jet viewed faced-on. This alternative scenario is compatible with the interpretation suggested in previous works once the indetermination of the absolute position of the self-calibrated VLBI images is taken into account. Fitting of the jet components motion to a simple internal rotation kinematical model shows that this scenario is a likely alternative explanation for the behavior of the innermost regions in the jet of NRAO 150.
Analysis of comprehensive monitoring of 34 gamma-ray bright quasars, BL Lac objects, and radio galaxies reveals a close connection between events in the millimeter-wave emission imaged with the VLBA at 43 GHz and flares at gamma-ray and lower frequen cies. Roughly 2/3 of the flares are coincident with the appearance of a new superluminal knot and/or a flare in the millimeter-wave core located parsecs from the central engine. This presents a theoretical challenge to explain how the gamma-ray flux can often be variable on intra-day time-scales. Possible answers to this include very narrow opening angles of the jet, small volume filling factors of the highest energy electrons, chaotic magnetic fields, and turbulent velocity fields relative to the mean jet flow.
We compare the gamma-ray light curves of the blazars, constructed with data provided by the Fermi Large Area Telescope, with flux and polarization variations in the VLBI core and bright superluminal knots obtained via monthly monitoring with the Very Long Baseline Array at 43 GHz. For all blazars in the sample that exhibit a high gamma-ray state on time scales from several weeks to several months, an increase of the total flux in the mm-wave core is contemporaneous with the gamma-ray activity (more than a third of the sample). Here we present the results for quasars with the most extreme gamma-ray behavior (3C 454.3, 3C 273, 3C 279, 1222+216, and 1633+382). The sources show that in addition to the total flux intensity behavior, a maximum in the degree of polarization in the core or bright superluminal knot nearest to the core coincides with the time of a gamma-ray peak to within the accuracy of the sampling of the radio data. These argue in favor of location of many of gamma-ray outbursts in blazars outside of the broad line region, either in the vicinity or downstream of the mm-wave VLBI core.
Context. NRAO 150 is one of the brightest radio and mm AGN sources on the northern sky. It has been revealed as an interesting source where to study extreme relativistic jet phenomena. However, its cosmological distance has not been reported so far, because of its optical faintness produced by strong Galactic extinction. Aims. Aiming at measuring the redshift of NRAO 150, and hence to start making possible quantitative studies from the source. Methods. We have conducted spectroscopic and photometric observations of the source in the near-IR, as well as in the optical. Results. All such observations have been successful in detecting the source. The near-IR spectroscopic observations reveal strong H$alpha$ and H$beta$ emission lines from which the cosmological redshift of NRAO 150 ($z=1.517pm0.002$) has been determined for the first time. We classify the source as a flat-spectrum radio-loud quasar, for which we estimate a large super-massive black-hole mass $sim5times 10^{9} mathrm{M_odot}$. After extinction correction, the new near-IR and optical data have revealed a high-luminosity continuum-emission excess in the optical (peaking at $sim2000$,AA, rest frame) that we attribute to thermal emission from the accretion disk for which we estimate a high accretion rate, $sim30$,% of the Eddington limit. Conclusions. Comparison of these source properties, and its broad-band spectral-energy distribution, with those of Fermi blazars allow us to predict that NRAO 150 is among the most powerful blazars, and hence a high luminosity -although not detected yet- $gamma$-ray emitter.
130 - P. Mimica 2009
(Abridged) We present numerical simulations of the spectral evolution and emission of radio components in relativistic jets. We have developed an algorithm (SPEV) for the transport of a population of non-thermal electrons including radiative losses. For large values of the ratio of gas pressure to magnetic field energy density, ab sim 6times 10^4, quiescent jet models show substantial spectral evolution, with observational consequences only above radio frequencies. Larger values of the magnetic field (ab sim 6times 10^2), such that synchrotron losses are moderately important at radio frequencies, present a larger ratio of shocked-to-unshocked regions brightness than the models without radiative losses, despite the fact that they correspond to the same underlying hydrodynamic structure. We also show that jets with a positive photon spectral index result if the lower limit gamma_min of the non-thermal particle energy distribution is large enough. A temporary increase of the Lorentz factor at the jet inlet produces a traveling perturbation that appears in the synthetic maps as a superluminal component. We show that trailing components can be originated not only in pressure matched jets, but also in over-pressured ones, where the existence of recollimation shocks does not allow for a direct identification of such features as Kelvin-Helmholtz modes, and its observational imprint depends on the observing frequency. If the magnetic field is large (ab sim 6times 10^2), the spectral index in the rarefaction trailing the traveling perturbation does not change much with respect to the same model without any hydrodynamic perturbation. If the synchrotron losses are considered the spectral index displays a smaller value than in the corresponding region of the quiescent jet model.
We present self-consistent global, steady-state MHD models and synthetic optically thin synchrotron emission maps for the jet of M87. The model consist of two distinct zones: an inner relativistic outflow, which we identify with the observed jet, and an outer cold disk-wind. While the former does not self-collimate efficiently due to its high effective inertia, the latter fulfills all the conditions for efficient collimation by the magneto-centrifugal mechanism. Given the right balance between the effective inertia of the inner flow and the collimation efficiency of the outer disk wind, the relativistic flow is magnetically confined into a well collimated beam and matches the measurements of the opening angle of M87 over several orders of magnitude in spatial extent. The synthetic synchrotron maps reproduce the morphological structure of the jet of M87, i.e. center-bright profiles near the core and limb-bright profiles away from the core. At the same time, they also show a local increase of brightness at some distance along the axis associated to a recollimation shock in the MHD model. Its location coincides with the position of the optical knot HST-1. In addition our best fitting model is consistent with a number of observational constraints such as the magnetic field in the knot HST-1, and the jet-to-counterjet brightness ratio.
55 - M. Perucho 2008
We present results on the modelling of the ejection of a superluminal component in the jet of 3C111. We propose that the component is generated by an injection of dense material followed by a decrease in the injection rate of bulk particles in the je t. Our model is supported by 1D relativistic hydrodynamics and emission simulations, and is capable of reproducing the brightness evolution of two features, as revealed by 15 GHz VLBA observations. We show that other scenarios, such as an increase of the Lorentz factor in the material of the perturbation, fails to reproduce the observed evolution of this flare.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا