ترغب بنشر مسار تعليمي؟ اضغط هنا

Relation between Events in the Millimeter-wave Core and Gamma-ray Outbursts in Blazar Jets

55   0   0.0 ( 0 )
 نشر من قبل Alan Marscher
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analysis of comprehensive monitoring of 34 gamma-ray bright quasars, BL Lac objects, and radio galaxies reveals a close connection between events in the millimeter-wave emission imaged with the VLBA at 43 GHz and flares at gamma-ray and lower frequencies. Roughly 2/3 of the flares are coincident with the appearance of a new superluminal knot and/or a flare in the millimeter-wave core located parsecs from the central engine. This presents a theoretical challenge to explain how the gamma-ray flux can often be variable on intra-day time-scales. Possible answers to this include very narrow opening angles of the jet, small volume filling factors of the highest energy electrons, chaotic magnetic fields, and turbulent velocity fields relative to the mean jet flow.

قيم البحث

اقرأ أيضاً

81 - T. Hovatta 2010
We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LA T during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.
Blazars exhibit flares across the entire electromagnetic spectrum. Many $gamma$-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variabili ty at longer wavelengths. These orphan $gamma$-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. Macdonald et al. have developed the Ring of Fire model to explain the origin of orphan $gamma$-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan $gamma$-ray flare. This model was successfully applied to modeling a prominent orphan $gamma$-ray flare observed in the blazar PKS 1510$-$089. To further support the plausibility of this model, Macdonald et al. presented a stacked radio map of PKS 1510$-$089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71$.$01, 3C 279, 1055$+$018, CTA 102, and 3C 345, the majority of which have exhibited orphan $gamma$-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.
We perform monthly total and polarized intensity imaging of a sample of $gamma$-ray blazars (33 sources) with the Very Long Baseline Array (VLBA) at 43 GHz with the high resolution of 0.1 milliarcseconds. From Summer 2008 to October 2009 several of t hese blazars triggered Astronomical Telegrams due to a high $gamma$-ray state detected by the Fermi Large Area Telescope (LAT): AO 0235+164, 3C 273, 3C 279, PKS 1510-089, and 3C 454.3. We have found that 1) $gamma$-ray flares in these blazars occur during an increase of the flux in the 43 GHz VLBI core; 2) strong $gamma$-ray activity, consisting of several flares of various amplitudes and durations (weeks to months), is simultaneous with the propagation of a superluminal knot in the inner jet, as found previously for BL Lac (Marscher et al. 2008); 3) coincidence of a superluminal knot with the 43 GHz core precedes the most intense $gamma$-ray flare by 36$pm$24 days. Our results strongly support the idea that the most dramatic $gamma$-ray outbursts of blazars originate in the vicinity of the mm-wave core of the relativistic jet. These results are preliminary and should be tested by future monitoring with the VLBA and Fermi.
The Yale/SMARTS optical-near-IR monitoring program has followed the variations in emission of the Fermi-LAT monitored blazars in the southern sky with closely spaced observations since 2008. We report the discovery of an optical-near-IR (OIR) outburs t with no accompanying gamma-rays in the blazar PKS 0208-512, one of the targets of this program. While the source undergoes three outbursts of 1 mag or more at OIR wavelengths lasting for longer than 3 months during 2008-2011, only interval 1 and 3 have corresponding bright phases in GeV energies lasting longer than 1 month. The OIR outburst during interval 2 is comparable in brightness and temporal extent to the OIR flares during intervals 1 and 3 which do have gamma-ray counterparts. Gamma-ray and OIR variability are very well-correlated in most cases in the Fermi blazars and the lack of correlation in this case is anomalous. By analyzing the gamma-ray, OIR, and supporting multi-wavelength variability data in details, we speculate that the location of the outburst in the jet during interval 2 was closer to the black hole where the jet is more compact and the magnetic field strength is higher, and the bulk Lorentz factor of the material in the jet is smaller. These result in a much lower Compton dominance and no observable gamma-ray outburst during interval 2.
We compare the gamma-ray photon flux variability of northern blazars in the Fermi/LAT First Source Catalog with 37 GHz radio flux density curves from the Metsahovi quasar monitoring program. We find that the relationship between simultaneous millimet er (mm) flux density and gamma-ray photon flux is different for different types of blazars. The flux relation between the two bands is positively correlated for quasars and does no exist for BLLacs. Furthermore, we find that the levels of gamma-ray emission in high states depend on the phase of the high frequency radio flare, with the brightest gamma-ray events coinciding with the initial stages of a mm flare. The mean observed delay from the beginning of a mm flare to the peak of the gamma-ray emission is about 70 days, which places the average location of the gamma-ray production at or downstream of the radio core. We discuss alternative scenarios for the production of gamma-rays at distances of parsecs along the length of the jet
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا