ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the spin resonance peak in recently discovered iron-based superconductors. The resonance peak observed in inelastic neutron scattering experiments agrees well with predicted results for the extended $s$-wave ($s_pm$) gap symmetry. Recent neu tron scattering measurements show that there is a disparity between longitudinal and transverse components of the dynamical spin susceptibility. Such breaking of the spin-rotational invariance in the spin-liquid phase can occur due to spin-orbit coupling. We study the role of the spin-orbit interaction in the multiorbital model for Fe-pnictides and show how it affects the spin resonance feature.
Phase-sensitive measurements of the superconducting gap in Fe-based superconductors have proven more difficult than originally anticipated. While quasiparticle interference (QPI) measurements based on scanning tunneling spectroscopy are often propose d as defnitive tests of gap structure, the analysis typically relies on details of the model employed. Here we point out that the temperature dependence of momentum-integrated QPI data can be used to identify gap sign changes in a qualitative way, and present an illustration for $s_{pm}$ and $s_{++}$ states in a system with typical Fe-pnictide Fermi surface.
We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to d_{x^2-y^2}-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise sub-dominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasi-particle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet d_{x^2-y^2} gap as well as the chiral triplet gap solution.
We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effe ctive interaction potential, which creates Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We find a dominant $d_{x^2-y^2}$-wave solution in both electron- and hole-doped cases. In the quasi-spin triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a $p$-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor $p$-wave pairing compared to $d_{x^2-y^2}$. The sub-leading pair instability is found to be in the $g$-wave channel, but complex admixtures of $d$ and $g$ are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are non-zero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations give intraband and interband pairing gaps of $d_{x^2-y^2}$ structure and similar gap magnitude. In conclusion, the $d_{x^2-y^2}$ gap dominates for both hole and electron doping inside the spin-density-wave phase.
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is sues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure ($p$) were studied by means of muon spin rotation. The magnetism remains bulk up to $psimeq3.5$~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at $psimeq$7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum $T_c simeq 1.2$~K which decreases upon increasing the pressure. In the intermediate pressure region ($3.5lesssim plesssim 7$~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature ($T_c$) and of the superfluid density ($rho_s$). A scaling of $rho_s$ with $T_c^{3.2}$ as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.
89 - W. Rowe , I. Eremin , A. R{o}mer 2013
We generalize the theory of Cooper pairing by spin excitations in the metallic antiferromagnetic state to include situations with electron and/or hole pockets. We show that Cooper pairing arises from transverse spin waves and from gapped longitudinal spin fluctuations of comparable strength. However, each of these interactions, projected on a particular symmetry of the superconducting gap, acts primarily within one type of pocket. We find a nodeless $d_{x^2-y^2}$-wave state is supported primarily by the longitudinal fluctuations on the electron pockets, and both transverse and longitudinal fluctuations support nodeless odd-parity spin singlet $p-$wave symmetry on the hole pockets. Our results may be relevant to the asymmetry of the AF/SC coexistence state in the cuprate phase diagram, as well as for the nodal gap observed recently for strongly underdoped cuprates.
98 - A. Cano , M. Civelli , I. Eremin 2010
The interplay between the structural and magnetic phase transitions occurring in the Fe-based pnictide superconductors is studied within a Ginzburg-Landau approach. We show that the magnetoelastic coupling between the corresponding order parameters i s behind the salient features observed in the phase diagram of these systems. This naturally explains the coincidence of transition temperatures observed in some cases as well as the character (first or second-order) of the transitions. We also show that magnetoelastic coupling is the key ingredient determining the collinearity of the magnetic ordering, and we propose an experimental criterion to distinguish between a pure elastic from a spin-nematic-driven structural transition.
We report on Raman scattering experiments of the undoped SrFe2As2 and superconducting Sr0.85K0.15Fe2As2 (Tc=28K) and Ba0.72K0.28Fe2As2 (Tc=32K) single crystals. The frequency and linewidth of the B1g mode at 210 cm-1 exhibits an appreciable temperatu re dependence induced by the superconducting and spin density wave transitions. We give estimates of the electron-phonon coupling related to this renormalization. In addition, we observe a pronounced quasi-elastic Raman response for the undoped compound, suggesting persisting magnetic fluctuations to low temperatures. In the superconducting state the renormalization of an electronic continuum is observed with a threshold energy of 61cm-1.
Angle resolved photoemission spectroscopy (ARPES) provides a detailed view of the renormalized band structure and, consequently, is a key to the self-energy and the single-particle Greens function. Here we summarize the ARPES data accumulated over th e whole Brillouin zone for the optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8-delta}$ into a parametric model of the Greens function, which we use for calculating the itinerant component of the dynamic spin susceptibility in absolute units with many-body effects taken into account. By comparison with inelastic neutron scattering (INS) data we show that the itinerant component of the spin response can account for the integral intensity of the experimental INS spectrum. Taking into account the bi-layer splitting, we explain the magnetic resonances in the acoustic (odd) and optic (even) INS channels.
154 - T. Mayer , M. Eremin , I. Eremin 2005
So far calculations of the spin susceptibility in the superconducting state of cuprates have been performed in the framework of weak-coupling approximations. However, it is known that cuprates belong to Mott-Hubbard doped materials where electron cor relations are important. In this paper an analytical expression for the spin susceptibility in the superconducting state of cuprates is derived within the singlet-correlated band model, which takes into account strong correlations. The expression of the spin susceptibility is evaluated using values for the hopping parameters adapted to measurements of the Fermi surface of the materials YBa2Cu3O7 and Bi2Sr2CaCu2O8. We show that the available experimental data which are directly related to the spin susceptibility can be explained consistently within one set of model parameters for each material. These experiments include the magnetic resonance peak observed by inelastic neutron scattering and the temperature dependence of the NMR spin shift, spin-spin and spin-lattice relaxation rates in the superconducting state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا