ترغب بنشر مسار تعليمي؟ اضغط هنا

A three-dimensional strong-topological-insulator or -semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur aw ay from time-reversal-invariant momenta. The mirror-invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi$_4$Se$_3$. Angle-resolved photoemission spectroscopy and textit{ab initio} calculations reveal partial gapping of surface bands on the Bi$_2$Se$_3$-termination of Bi$_4$Se$_3$(111), where an 85 meV gap along $bar{Gamma}bar{K}$ closes to zero toward the mirror-invariant $bar{Gamma}bar{M}$ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin-helicity.
We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ la yers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $Gamma$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.
109 - Huiwen Ji , J. M. Allred , Ni Ni 2012
We demonstrate that the layered room temperature ferromagnet Fe7Se8 and the topological insulator Bi2Se3 form crystallographically oriented bulk composite intergrowth crystals. The morphology of the intergrowth in real space and reciprocal space is d escribed. Critically, the basal planes of Bi2Se3 and Fe7Se8 are parallel and hence the good cleavage inherent in the bulk phases is retained. The intergrowth is on the micron scale. Both phases in the intergrowth crystals display their intrinsic bulk properties: the ferromagnetism of the Fe7Se8 is anisotropic, with magnetization easy axis in the plane of the crystals, and ARPES characterization shows that the topological surface states remain present on the Bi2Se3. Analogous behavior is found for what has been called Fe-doped Bi2Se3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا