ترغب بنشر مسار تعليمي؟ اضغط هنا

High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration.
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.
Rather than point estimators, states of a quantum system that represent ones best guess for the given data, we consider optimal regions of estimators. As the natural counterpart of the popular maximum-likelihood point estimator, we introduce the maxi mum-likelihood region---the region of largest likelihood among all regions of the same size. Here, the size of a region is its prior probability. Another concept is the smallest credible region---the smallest region with pre-chosen posterior probability. For both optimization problems, the optimal region has constant likelihood on its boundary. We discuss criteria for assigning prior probabilities to regions, and illustrate the concepts and methods with several examples.
In multi-level systems, the commonly used adiabatic elimination is a method for approximating the dynamics of the system by eliminating irrelevant, non-resonantly coupled levels. This procedure is, however, somewhat ambiguous and it is not clear how to improve on it systematically. We use an integro-differential equation for the probability amplitudes of the levels of interest, which is equivalent to the original Schrodinger equation for all probability amplitudes. In conjunction with a Markov approximation, the integro-differential equation is then used to generate a hierarchy of approximations, in which the zeroth order is the adiabatic-elimination approximation. It works well with a proper choice of interaction picture; the procedure suggests criteria for optimizing this choice. The first-order approximation in the hierarchy provides significant improvements over standard adiabatic elimination, without much increase in complexity, and is furthermore not so sensitive to the choice of interaction picture. We illustrate these points with several examples.
Quantum tomography requires repeated measurements of many copies of the physical system, all prepared by a source in the unknown state. In the limit of very many copies measured, the often-used maximum-likelihood (ML) method for converting the gather ed data into an estimate of the state works very well. For smaller data sets, however, it often suffers from problems of rank deficiency in the estimated state. For many systems of relevance for quantum information processing, the preparation of a very large number of copies of the same quantum state is still a technological challenge, which motivates us to look for estimation strategies that perform well even when there is not much data. In this article, we review the concept of minimax state estimation, and use minimax ideas to construct a simple estimator for quantum states. We demonstrate that, for the case of tomography of a single qubit, our estimator significantly outperforms the ML estimator for small number of copies of the state measured. Our estimator is always full-rank, and furthermore, has a natural dependence on the number of copies measured, which is missing in the ML estimator.
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote cted gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise, and have a lower overhead cost, than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer, and can be expressed either in terms of the operator norm of the baths Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.
88 - Hui Khoon Ng 2009
We demonstrate that there exists a universal, near-optimal recovery map---the transpose channel---for approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using the transpose channel, we provide an al ternative interpretation of the standard quantum error correction (QEC) conditions, and generalize them to a set of conditions for approximate QEC (AQEC) codes. This forms the basis of a simple algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work relying on exhaustive numerical search for the optimal recovery map, with optimality defined based on entanglement fidelity. For the practically useful case of codes encoding a single qubit of information, our algorithm is particularly easy to implement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا