ترغب بنشر مسار تعليمي؟ اضغط هنا

Representation of dielectric properties by impedance spectroscopy (IS) is analyzed carefully in this paper. It is found that IS is not a good tool to describe a uniform system because a pseudo relaxation peaks exists at low frequency limit correspond ing to direct current (DC) conductivity and two relaxation peaks appears simultaneously corresponding to one relaxation process for a high loss system with tand>1. However it is very convenient to describe a multiple phase system with IS. When dielectric properties are shown by Cole-Cole equation, only one Cole-Cole arc appears for one phase in IS, therefore it is very easy to distinguish different phases from each other. Especially, since pseudo relaxation exists at low frequency limit for each phase, the location of a certain relaxation process can be deduced by IS without any uncertainty. Furthermore, when dielectric properties are shown with specific impedance spectroscopy (ISI), the information of microstructure can be obtained conveniently. Based on the theoretical results above, dielectric properties of CaCu3Ti4O12 (CCTO) ceramics with giant dielectric constant (GDC) are investigated. Microstructure of CCTO is obtained by dielectric spectrometer and the origin of GDC is found to come from pseudo relaxation of grain.
We study a general theory of phonon lasing [I. S. Grudinin et al., Phys. Rev. Lett. 104, 083901 (2010)] in coupled optomechancial systems. We derive the dynamical equation of the phonon lasing using supermodes formed by two cavity modes. A general th reshold condition for phonon lasing is obtained. We also show the differences between phonon lasing and photon lasing, generated by photonic supermodes and two-level atomic systems, respectively. We find that the phonon lasing can be realized in certain parameter regime near the threshold. The phase diagram and second-order correlation function of the phonon lasing are also studied to show some interesting phenomena that cannot be observed in the common photon lasing with the two-level systems.
82 - Hui Wang , Xiu Gu , Yu-xi Liu 2014
Some optomechanical systems can be transparent to a probe field when a strong driving field is applied. These systems can provide an optomechanical analogue of electromagnetically-induced transparency (EIT). We study the transmission of a probe field through a hybrid optomechanical system consisting of a cavity and a mechanical resonator with a two-level system (qubit). The qubit might be an intrinsic defect inside the mechanical resonator, a superconducting artificial atom, or another two-level system. The mechanical resonator is coupled to the cavity field via radiation pressure and to the qubit via the Jaynes-Cummings interaction. We find that the dressed two-level system and mechanical phonon can form two sets of three-level systems. Thus, there are two transparency windows in the discussed system. We interpret this effect as an optomechanical analog of two-color EIT (or double-EIT). We demonstrate how to switch between one and two EIT windows by changing the transition frequency of the qubit. We show that the absorption and dispersion of the system are mainly affected by the qubit-phonon coupling strength and the transition frequency of the qubit.
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single- photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.
This paper attempts to discuss the evolution of the retrieval approaches focusing on development, challenges and future direction of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image d ata leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users mind. Hence, introducing an interpretation inconsistency between image descriptors and high level semantics that known as the semantic gap. This paper also discusses the semantic gap issues, user query mechanisms as well as common ways used to bridge the gap in image retrieval.
238 - Hui Wang , Ned S. Wingreen , 2008
Chemotaxis receptors in E. coli form clusters at the cell poles and also laterally along the cell body, and this clustering plays an important role in signal transduction. Recently, experiments using flourrescence imaging have shown that, during cell growth, lateral clusters form at positions approximately periodically spaced along the cell body. In this paper, we demonstrate within a lattice model that such spatial organization could arise spontaneously from a stochastic nucleation mechanism. The same mechanism may explain the recent observation of periodic aggregates of misfolded proteins in E. coli.
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, is studied using the adaptive time dependent density matrix renormalization g roup (t-DMRG) method. It is found that the interplay of the coupling inhomogeneity and the transverse intra-bath interactions results in two qualitatively different coherence evolutions, namely, a coherence preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron spin flip at time $tau$ exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at $sqrt 2 tau$ for the decoherence evolution, respectively. With the diagonal intra-bath interaction included, the specific feature of the periodic regime is kept, while the $sqrt 2tau$-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of $tau$ is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
All the possible super-conducting order parameters for the LaOFeAs system are classified by their transformation under the complete crystal symmetry. The general forms of the super-conducting gap functions for each class are discussed. We find that t he gap functions in such a multi-band system belong to three types, full gap, nodal type and finite {}``Fermi arc type. Possible physical consequences caused by different types of gap functions are also discussed.
A defining feature of many large empirical networks is their intrinsic complexity. However, many networks also contain a large degree of structural repetition. An immediate question then arises: can we characterize essential network complexity while excluding structural redundancy? In this article we utilize inherent network symmetry to collapse all redundant information from a network, resulting in a coarse-graining which we show to carry the essential structural information of the `parent network. In the context of algebraic combinatorics, this coarse-graining is known as the emph{quotient}. We systematically explore the theoretical properties of network quotients and summarize key statistics of a variety of `real-world quotients with respect to those of their parent networks. In particular, we find that quotients can be substantially smaller than their parent networks yet typically preserve various key functional properties such as complexity (heterogeneity and hubs vertices) and communication (diameter and mean geodesic distance), suggesting that quotients constitute the essential structural skeleton of their parent network. We summarize with a discussion of potential uses of quotients in analysis of biological regulatory networks and ways in which using quotients can reduce the computational complexity of network algorithms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا