ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.
The study of optical parametric amplifiers (OPAs) has been successful in describing and creating nonclassical light for use in fields such as quantum metrology and quantum lithography [Agarwal, et al., J. Opt. Soc. Am. B, 24, 2 (2007)]. In this paper we present the theory of an OPA scheme utilizing an entangled state input. The scheme involves two identical OPAs seeded with the maximally path-entangled N00N state (|2,0>+|0,2>)/sqrt{2}. The stimulated amplification results in output state probability amplitudes that have a dependence on the number of photons in each mode, which differs greatly from two-mode squeezed vacuum. The output contains a family of entangled states directly applicable to quantum key distribution. Specific output states allow for the heralded creation of N=4 N00N states, which may be used for quantum lithography, to write sub-Rayleigh fringe patterns, and for quantum interferometry, to achieve Heisenberg-limited phase measurement sensitivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا