ترغب بنشر مسار تعليمي؟ اضغط هنا

34 - Philip Kaaret , Hua Feng 2013
We present a measurement of the X-ray spectrum of the luminous X-ray binary in I Zw 18, the blue compact dwarf galaxy with the lowest known metallicity. We find the highest flux yet observed, corresponding to an intrinsic luminosity near 1E40 erg/s e stablishing it as an ultraluminous X-ray source (ULX). The energy spectrum is dominated by disk emission with a weak or absent Compton component and there is no significant timing noise; both are indicative of the thermal state of stellar-mass black hole X-ray binaries and inconsistent with the Compton-dominated state typical of most ULX spectra. A previous measurement of the X-ray spectrum shows a harder spectrum that is well described by a powerlaw. Thus, the binary appears to exhibit spectral states similar to those observed from stellar-mass black hole binaries. If the hard state occurs in the range of luminosities found for the hard state in stellar-mass black hole binaries, then the black hole mass must be at least 85 solar masses. Spectral fitting of the thermal state shows that disk luminosities for which thin disk models are expected to be valid are produced only for relatively high disk inclinations, >= 60 degrees, and rapid black hole spins. We find a_* > 0.98 and M > 154 solar masses for a disk inclination of 60 degrees. Higher inclinations produce higher masses and somewhat lower spins.
151 - Philip Kaaret , Hua Feng , 2008
We detected a major X-ray outburst from M82 with a duration of 79 days, an average flux of 5E-11 erg cm^-2 s^-1 in the 2-10 keV band, and strong variability. The X-ray spectrum remained hard throughout the outburst. We obtained a Chandra observation during the outburst that shows that the emission arises from the ultraluminous X-ray source X41.4+60. This source has an unabsorbed flux of (5.4 +/- 0.2)E-11 erg cm^-2 s^-1 in the 0.3-8 keV band, equivalent to an isotropic luminosity of 8.5E40 erg/s. The spectrum is adequately fitted with an absorbed power-law with a photon index of 1.55 +/- 0.05. This photon index is very similar to the value of 1.61 +/- 0.06 measured previously while the flux was (2.64 +/- 0.14)E-11 erg cm^-2 s^-1. Thus, the source appears to remain in the hard state even at the highest flux levels observed. The X-ray spectral and timing data available for X41.4+60 are consistent with the source being in a luminous hard state and a black hole mass in the range of one to a few thousand solar masses.
111 - Hua Feng , Philip Kaaret 2007
We present Chandra and HST observations of the ultraluminous X-ray source (ULX) IC 342 X-1. The Chandra and HST images are aligned using two X-ray emitting foreground stars. The astrometry corrected position for X-1 is R.A. = 03h45m55.61s, Decl. = +6 8d04m55.3s (J2000) with an error circle of 0.2. One extended optical source is found in the error circle, which could be the optical counterpart of X-1. The source shows an extended feature in HST images at long wavelengths, which is likely to be a superposition of two point sources, although it is possible that the dimmer one could be a jet. Both sources are much redder than typical for ULX optical counterparts. The brighter one has an absolute magnitude M_V = -5.2 +/- 0.2 and (B-V)_0 = 0.66 +/- 0.13 and the dimmer star is not detected in B and has (B-V)_0 > 2.1. Their colors are consistent with an F8 to G0 Ib supergiant or a carbon star, respectively. However, it is likely that part or most of the optical emission may be due to X-rays reprocessed by the companion star or the accretion disk. The stellar neighborhood of IC 342 X-1 lacks O stars and has a minimum age of ~10 Myr. This excludes the possibility that the surrounding nebula is powered by an energetic explosion of a single massive star that formed a black hole. We suggest that the nebula is most likely powered by an outflow from the X-ray source.
The starburst galaxy M82 contains two ultraluminous X-ray sources (ULXs), CXOM82 J095550.2+694047 (=X41.4+60) and CXOM82 J095551.1+694045 (=X42.3+59), which are unresolved by XMM-Newton. We revisited the two XMM-Newton observations of M82 and analyze d the surface brightness profiles using the known Chandra source positions. We show that the quasi-periodic oscillations (QPOs) detected with XMM-Newton originate from X41.4+60, the brightest X-ray source in M82. Correcting for the contributions of the unresolved sources, the QPO at a frequency of 55.8+/-1.3 mHz on 2001 May 06 had a fractional rms amplitude of 32%, and the QPO at 112.9+/-1.3 mHz on 2004 April 21 had an amplitude of 21%. The QPO frequency may possibly be correlated with the source flux, similar to the type C QPOs in XTE 1550-564 and GRS 1915+105, but at luminosities two orders of magnitude higher. X42.3+59, the second brightest source in M82, displayed a strikingly high flux of 1.4E-11 ergs/cm^2/s in the 2-10 keV band on 2001 May 6. A seven-year light curve of X42.3+59 shows extreme variability over a factor of 1000; the source is not detected in several Chandra observations. This transient behavior suggests accretion from an unstable disk. If the companion star is massive, as might be expected in the young stellar environment, then the compact object would likely be an IMBH.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا