ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new class of integrators for stiff PDEs. These integrators are generalizations of FLow AVeraging integratORS (FLAVORS) for stiff ODEs and SDEs introduced in [Tao, Owhadi and Marsden 2010] with the following properties: (i) Multiscale: th ey are based on flow averaging and have a computational cost determined by mesoscopic steps in space and time instead of microscopic steps in space and time; (ii) Versatile: the method is based on averaging the flows of the given PDEs (which may have hidden slow and fast processes). This bypasses the need for identifying explicitly (or numerically) the slow variables or reduced effective PDEs; (iii) Nonintrusive: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale; (iv) Convergent over two scales: strongly over slow processes and in the sense of measures over fast ones; (v) Structure-preserving: for stiff Hamiltonian PDEs (possibly on manifolds), they can be made to be multi-symplectic, symmetry-preserving (symmetries are group actions that leave the system invariant) in all variables and variational.
This paper is concerned with tuning friction and temperature in Langevin dynamics for fast sampling from the canonical ensemble. We show that near-optimal acceleration is achieved by choosing friction so that the local quadratic approximation of the Hamiltonian is a critical damped oscillator. The system is also over-heated and cooled down to its final temperature. The performances of different cooling schedules are analyzed as functions of total simulation time.
We present a multiscale integrator for Hamiltonian systems with slowly varying quadratic stiff potentials that uses coarse timesteps (analogous to what the impulse method uses for constant quadratic stiff potentials). This method is based on the high ly-non-trivial introduction of two efficient symplectic schemes for exponentiations of matrices that only require O(n) matrix multiplications operations at each coarse time step for a preset small number n. The proposed integrator is shown to be (i) uniformly convergent on positions; (ii) symplectic in both slow and fast variables; (iii) well adapted to high dimensional systems. Our framework also provides a general method for iteratively exponentiating a slowly varying sequence of (possibly high dimensional) matrices in an efficient way.
Impulse methods are generalized to a family of integrators for Langevin systems with quadratic stiff potentials and arbitrary soft potentials. Uniform error bounds (independent from stiff parameters) are obtained on integrated positions allowing for coarse integration steps. The resulting integrators are explicit and structure preserving (quasi-symplectic for Langevin systems).
54 - Molei Tao , Houman Owhadi , 2009
We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variab les (ii) {it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا