ترغب بنشر مسار تعليمي؟ اضغط هنا

In recent years, online ride-hailing platforms have become an indispensable part of urban transportation. After a passenger is matched up with a driver by the platform, both the passenger and the driver have the freedom to simply accept or cancel a r ide with one click. Hence, accurately predicting whether a passenger-driver pair is a good match turns out to be crucial for ride-hailing platforms to devise instant order assignments. However, since the users of ride-hailing platforms consist of two parties, decision-making needs to simultaneously account for the dynamics from both the driver and the passenger sides. This makes it more challenging than traditional online advertising tasks. Moreover, the amount of available data is severely imbalanced across different cities, creating difficulties for training an accurate model for smaller cities with scarce data. Though a sophisticated neural network architecture can help improve the prediction accuracy under data scarcity, the overly complex design will impede the models capacity of delivering timely predictions in a production environment. In the paper, to accurately predict the MSR of passenger-driver, we propose the Multi-View model (MV) which comprehensively learns the interactions among the dynamic features of the passenger, driver, trip order, as well as context. Regarding the data imbalance problem, we further design the Knowledge Distillation framework (KD) to supplement the models predictive power for smaller cities using the knowledge from cities with denser data and also generate a simple model to support efficient deployment. Finally, we conduct extensive experiments on real-world datasets from several different cities, which demonstrates the superiority of our solution.
The sequential recommendation aims to recommend items, such as products, songs and places, to users based on the sequential patterns of their historical records. Most existing sequential recommender models consider the next item prediction task as th e training signal. Unfortunately, there are two essential challenges for these methods: (1) the long-term preference is difficult to capture, and (2) the supervision signal is too sparse to effectively train a model. In this paper, we propose a novel sequential recommendation framework to overcome these challenges based on a memory augmented multi-instance contrastive predictive coding scheme, denoted as MMInfoRec. The basic contrastive predictive coding (CPC) serves as encoders of sequences and items. The memory module is designed to augment the auto-regressive prediction in CPC to enable a flexible and general representation of the encoded preference, which can improve the ability to capture the long-term preference. For effective training of the MMInfoRec model, a novel multi-instance noise contrastive estimation (MINCE) loss is proposed, using multiple positive samples, which offers effective exploitation of samples inside a mini-batch. The proposed MMInfoRec framework falls into the contrastive learning style, within which, however, a further finetuning step is not required given that its contrastive training task is well aligned with the target recommendation task. With extensive experiments on four benchmark datasets, MMInfoRec can outperform the state-of-the-art baselines.
Session-based recommendation targets next-item prediction by exploiting user behaviors within a short time period. Compared with other recommendation paradigms, session-based recommendation suffers more from the problem of data sparsity due to the ve ry limited short-term interactions. Self-supervised learning, which can discover ground-truth samples from the raw data, holds vast potentials to tackle this problem. However, existing self-supervised recommendation models mainly rely on item/segment dropout to augment data, which are not fit for session-based recommendation because the dropout leads to sparser data, creating unserviceable self-supervision signals. In this paper, for informative session-based data augmentation, we combine self-supervised learning with co-training, and then develop a framework to enhance session-based recommendation. Technically, we first exploit the session-based graph to augment two views that exhibit the internal and external connectivities of sessions, and then we build two distinct graph encoders over the two views, which recursively leverage the different connectivity information to generate ground-truth samples to supervise each other by contrastive learning. In contrast to the dropout strategy, the proposed self-supervised graph co-training preserves the complete session information and fulfills genuine data augmentation. Extensive experiments on multiple benchmark datasets show that, session-based recommendation can be remarkably enhanced under the regime of self-supervised graph co-training, achieving the state-of-the-art performance.
159 - Yang Li , Tong Chen , Hongzhi Yin 2021
Being an indispensable component in location-based social networks, next point-of-interest (POI) recommendation recommends users unexplored POIs based on their recent visiting histories. However, existing work mainly models check-in data as isolated POI sequences, neglecting the crucial collaborative signals from cross-sequence check-in information. Furthermore, the sparse POI-POI transitions restrict the ability of a model to learn effective sequential patterns for recommendation. In this paper, we propose Sequence-to-Graph (Seq2Graph) augmentation for each POI sequence, allowing collaborative signals to be propagated from correlated POIs belonging to other sequences. We then devise a novel Sequence-to-Graph POI Recommender (SGRec), which jointly learns POI embeddings and infers a users temporal preferences from the graph-augmented POI sequence. To overcome the sparsity of POI-level interactions, we further infuse category-awareness into SGRec with a multi-task learning scheme that captures the denser category-wise transitions. As such, SGRec makes full use of the collaborative signals for learning expressive POI representations, and also comprehensively uncovers multi-level sequential patterns for user preference modelling. Extensive experiments on two real-world datasets demonstrate the superiority of SGRec against state-of-the-art methods in next POI recommendation.
Self-supervised learning (SSL), which can automatically generate ground-truth samples from raw data, holds vast potential to improve recommender systems. Most existing SSL-based methods perturb the raw data graph with uniform node/edge dropout to gen erate new data views and then conduct the self-discrimination based contrastive learning over different views to learn generalizable representations. Under this scheme, only a bijective mapping is built between nodes in two different views, which means that the self-supervision signals from other nodes are being neglected. Due to the widely observed homophily in recommender systems, we argue that the supervisory signals from other nodes are also highly likely to benefit the representation learning for recommendation. To capture these signals, a general socially-aware SSL framework that integrates tri-training is proposed in this paper. Technically, our framework first augments the user data views with the user social information. And then under the regime of tri-training for multi-view encoding, the framework builds three graph encoders (one for recommendation) upon the augmented views and iteratively improves each encoder with self-supervision signals from other users, generated by the other two encoders. Since the tri-training operates on the augmented views of the same data sources for self-supervision signals, we name it self-supervised tri-training. Extensive experiments on multiple real-world datasets consistently validate the effectiveness of the self-supervised tri-training framework for improving recommendation. The code is released at https://github.com/Coder-Yu/QRec.
Conversational recommender systems (CRSs) have revolutionized the conventional recommendation paradigm by embracing dialogue agents to dynamically capture the fine-grained user preference. In a typical conversational recommendation scenario, a CRS fi rstly generates questions to let the user clarify her/his demands and then makes suitable recommendations. Hence, the ability to generate suitable clarifying questions is the key to timely tracing users dynamic preferences and achieving successful recommendations. However, existing CRSs fall short in asking high-quality questions because: (1) system-generated responses heavily depends on the performance of the dialogue policy agent, which has to be trained with huge conversation corpus to cover all circumstances; and (2) current CRSs cannot fully utilize the learned latent user profiles for generating appropriate and personalized responses. To mitigate these issues, we propose the Knowledge-Based Question Generation System (KBQG), a novel framework for conversational recommendation. Distinct from previous conversational recommender systems, KBQG models a users preference in a finer granularity by identifying the most relevant relations from a structured knowledge graph (KG). Conditioned on the varied importance of different relations, the generated clarifying questions could perform better in impelling users to provide more details on their preferences. Finially, accurate recommendations can be generated in fewer conversational turns. Furthermore, the proposed KBQG outperforms all baselines in our experiments on two real-world datasets.
In the mobile Internet era, the recommender system has become an irreplaceable tool to help users discover useful items, and thus alleviating the information overload problem. Recent deep neural network (DNN)-based recommender system research have ma de significant progress in improving prediction accuracy, which is largely attributed to the access to a large amount of users personal data collected from users devices and then centrally stored in the cloud server. However, as there are rising concerns around the globe on user privacy leakage in the online platform, the public is becoming anxious by such abuse of user privacy. Therefore, it is urgent and beneficial to develop a recommender system that can achieve both high prediction accuracy and high degree of user privacy protection. To this end, we propose a DNN-based recommendation model called PrivRec running on the decentralized federated learning (FL) environment, which ensures that a users data never leaves his/her during the course of model training. On the other hand, to better embrace the data heterogeneity commonly existing in FL, we innovatively introduce a first-order meta-learning method that enables fast in-device personalization with only few data points. Furthermore, to defense from potential malicious participant that poses serious security threat to other users, we develop a user-level differentially private DP-PrivRec model so that it is unable to determine whether a particular user is present or not solely based on the trained model. Finally, we conduct extensive experiments on two large-scale datasets in a simulated FL environment, and the results validate the superiority of our proposed PrivRec and DP-PrivRec.
In recent years, recommender systems play a pivotal role in helping users identify the most suitable items that satisfy personal preferences. As user-item interactions can be naturally modelled as graph-structured data, variants of graph convolutiona l networks (GCNs) have become a well-established building block in the latest recommenders. Due to the wide utilization of sensitive user profile data, existing recommendation paradigms are likely to expose users to the threat of privacy breach, and GCN-based recommenders are no exception. Apart from the leakage of raw user data, the fragility of current recommenders under inference attacks offers malicious attackers a backdoor to estimate users private attributes via their behavioral footprints and the recommendation results. However, little attention has been paid to developing recommender systems that can defend such attribute inference attacks, and existing works achieve attack resistance by either sacrificing considerable recommendation accuracy or only covering specific attack models or protected information. In our paper, we propose GERAI, a novel differentially private graph convolutional network to address such limitations. Specifically, in GERAI, we bind the information perturbation mechanism in differential privacy with the recommendation capability of graph convolutional networks. Furthermore, based on local differential privacy and functional mechanism, we innovatively devise a dual-stage encryption paradigm to simultaneously enforce privacy guarantee on users sensitive features and the model optimization process. Extensive experiments show the superiority of GERAI in terms of its resistance to attribute inference attacks and recommendation effectiveness.
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, rea l-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.
Obstructive Sleep Apnea (OSA) is a highly prevalent but inconspicuous disease that seriously jeopardizes the health of human beings. Polysomnography (PSG), the gold standard of detecting OSA, requires multiple specialized sensors for signal collectio n, hence patients have to physically visit hospitals and bear the costly treatment for a single detection. Recently, many single-sensor alternatives have been proposed to improve the cost efficiency and convenience. Among these methods, solutions based on RR-interval (i.e., the interval between two consecutive pulses) signals reach a satisfactory balance among comfort, portability and detection accuracy. In this paper, we advance RR-interval based OSA detection by considering its real-world practicality from energy perspectives. As photoplethysmogram (PPG) pulse sensors are commonly equipped on smart wrist-worn wearable devices (e.g., smart watches and wristbands), the energy efficiency of the detection model is crucial to fully support an overnight observation on patients. This creates challenges as the PPG sensors are unable to keep collecting continuous signals due to the limited battery capacity on smart wrist-worn devices. Therefore, we propose a novel Frequency Extraction Network (FENet), which can extract features from different frequency bands of the input RR-interval signals and generate continuous detection results with downsampled, discontinuous RR-interval signals. With the help of the one-to-multiple structure, FENet requires only one-third of the operation time of the PPG sensor, thus sharply cutting down the energy consumption and enabling overnight diagnosis. Experimental results on real OSA datasets reveal the state-of-the-art performance of FENet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا