ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - Hui Li , Hongtao He , Hai-Zhou Lu 2015
A large negative magnetoresistance is anticipated in topological semimetals in the parallel magnetic and electric field configuration as a consequence of the nontrivial topological properties. The negative magnetoresistance is believed to demonstrate the chiral anomaly, a long-sought high-energy physics effect, in solid-state systems. Recent experiments reveal that Cd3As2, a Dirac topological semimetal, has the record-high mobility and exhibits positive linear magnetoresistance in the orthogonal magnetic and electric field configuration. However, the negative magnetoresistance in the parallel magnetic and electric field configuration remains unveiled. Here, we report the observation of the negative magnetoresistance in Cd3As2 microribbons in the parallel magnetic and electric field configuration as large as 66% at 50 K and even visible at room temperatures. The observed negative magnetoresistance is sensitive to the angle between magnetic and electrical field, robust against temperature, and dependent on the carrier density. We have found that carrier densities of our Cd3As2 samples obey an Arrheniuss law, decreasing from 3.0x10^17 cm^-3 at 300 K to 2.2x10^16 cm^-3 below 50 K. The low carrier densities result in the large values of the negative magnetoresistance. We therefore attribute the observed negative magnetoresistance to the chiral anomaly. Furthermore, in the perpendicular magnetic and electric field configuration a positive non-saturating linear magnetoresistance up to 1670% at 14 T and 2 K is also observed. This work demonstrates potential applications of topological semimetals in magnetic devices.
The circularly-polarized and angular-resolved magneto-photoluminescence spectroscopy was carried out to study the free A exciton 1S state in wurtzite ZnO at 5 K.
We studied the circular polarization and angular dependences of the magneto-photoluminescence spectra of the free A-exciton 1S state in wurtzite ZnO at T = 5 K. The circular polarization properties of the spectra clearly indicate that the top valence band has Gamma_7 symmetry. The out-of-plane component of the magnetic field, which is parallel to the samples c axis, leads to linear Zeeman splitting of both the dipole-allowed Gamma_5 exciton state and the weakly allowed Gamma_1/Gamma_2 exciton states. The in-plane field, which is perpendicular to the c axis, increases the oscillator strength of the weak Gamma_1/Gamma_2 states by forming a mixed exciton state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا