ترغب بنشر مسار تعليمي؟ اضغط هنا

This article is dedicated to the following class of problems. Start with an $Ntimes N$ Hermitian matrix randomly picked from a matrix ensemble - the reference matrix. Applying a rank-$t$ perturbation to it, with $t$ taking the values $1le t le N$, we study the difference between the spectra of the perturbed and the reference matrices as a function of $t$ and its dependence on the underlying universality class of the random matrix ensemble. We consider both, the weaker kind of perturbation which either permutes or randomizes $t$ diagonal elements and a stronger perturbation randomizing successively $t$ rows and columns. In the first case we derive universal expressions in the scaled parameter $tau=t/N$ for the expectation of the variance of the spectral shift functions, choosing as random-matrix ensembles Dysons three Gaussian ensembles. In the second case we find an additional dependence on the matrix size $N$.
We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50, 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmis sion lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.
The distribution of scattering delay times is analyzed for classical electrons which are transmitted through a finite waveguide. For non-zero magnetic field the distribution shows a regular pattern of maxima (logarithmic singularities). Although thei r location follows from a simple commensurability condition, there is no straightforward geometric explanation of this self-pulsing effect. Rather it can be understood as a time-dependent analog of transverse magnetic focusing, in terms of the stationary points of the delay time. We also discuss the possibility of singularities in the delay-time distribution for generic 2D scattering systems.
We study the conductance of chaotic or disordered wires in a situation where equilibrium transport decomposes into biased diffusion and a counter-moving regular current. A possible realization is a semiconductor nanostructure with transversal magneti c field and suitably patterned surfaces. We find a non-trivial dependence of the conductance on the wire length which differs qualitatively from Ohms law by the existence of a characteristic length scale and a finite saturation value.
In generic Hamiltonian systems with a mixed phase space chaotic transport may be directed and ballistic rather than diffusive. We investigate one particular model showing this behaviour, namely a spatially periodic billiard chain in which electrons m ove under the influence of a perpendicular magnetic field. We analyze the phase-space structure and derive an explicit expression for the chaotic transport velocity. Unlike previous studies of directed chaos our model has a parameter regime in which the dispersion of an ensemble of chaotic trajectories around its moving center of mass is essentially diffusive. We explain how in this limit the deterministic chaos reduces to a biased random walk in a billiard with a rough surface. The diffusion constant for this simplified model is calculated analytically.
78 - Holger Schanz 2004
It is shown that the Husimi representations of chaotic eigenstates are strongly correlated along classical trajectories. These correlations extend across the whole system size and, unlike the corresponding eigenfunction correlations in configuration space, they persist in the semiclassical limit. A quantitative theory is developed on the basis of Gaussian wavepacket dynamics and random-matrix arguments. The role of symmetries is discussed for the example of time-reversal invariance.
We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic transport in the absence of an average force. We discuss general conditions for such directed transport, like a mixed classical phase space, and elucidate a sum rule that relates the contributions of different phase-space components to transport with each other. We show that regular ratchet transport can be directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems. For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a semiclassical expression for the distribution of level velocities which encode the quantum transport in the Floquet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.
We study the quantum probability to survive in an open chaotic system in the framework of the van Vleck-Gutzwiller propagator and present the first such calculation that accounts for quantum interference effects. Specifically we calculate quantum dev iations from the classical decay after the break time for both broken and preserved time-reversal symmetry. The source of these corrections is identified in interfering pairs of correlated classical trajectories. In our approach the quantized chaotic system is modelled by a quatum graph.
We consider universal shot noise in ballistic chaotic cavities from a semiclassical point of view and show that it is due to action correlations within certain groups of classical trajectories. Using quantum graphs as a model system we sum these traj ectories analytically and find agreement with random-matrix theory. Unlike all action correlations which have been considered before, the correlations relevant for shot noise involve four trajectories and do not depend on the presence of any symmetry.
We show that enhanced wavefunction localization due to the presence of short unstable orbits and strong scarring can rely on completely different mechanisms. Specifically we find that in quantum networks the shortest and most stable orbits do not sup port visible scars, although they are responsible for enhanced localization in the majority of the eigenstates. Scarring orbits are selected by a criterion which does not involve the classical Lyapunov exponent. We obtain predictions for the energies of visible scars and the distributions of scarring strengths and inverse participation ratios.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا