ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the stability of excitonic ground states in the two-band Hubbard model with additional electron-phonon and Hunds rule couplings using a combination of mean-field and variational cluster approaches. We show that both the interband Coulomb i nteraction and the electron-phonon interaction will cooperatively stabilize a charge density wave (CDW) state which typifies an excitonic CDW if predominantly triggered by the effective interorbital electron-hole attraction or a phononic CDW if mostly caused by the coupling to the lattice degrees of freedom. By contrast, the Hunds rule coupling promotes an excitonic spin density wave. We determine the transition between excitonic charge and spin density waves and comment on a fixation of the phase of the excitonic order parameter that would prevent the formation of a superfluid condensate of excitons. The implications for exciton condensation in several material classes with strongly correlated electrons are discussed.
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a single dot and demonstrate that for small-sized scatterers the cross-sections are dominated by quantum effects, where resonant scattering leads to a series of quasi-bound dot states. Calculating the conductance and the local density of states for quantum dot superlattices we show that the resonant carrier transport through such graphene-based nanostructures can be easily tuned by varying the gate voltage.
We reexamine the one-dimensional spin-1 $XXZ$ model with on-site uniaxial single-ion anisotropy as to the appearance and characterization of the symmetry-protected topological Haldane phase. By means of large-scale density-matrix renormalization grou p (DMRG) calculations the central charge can be determined numerically via the von Neumann entropy, from which the ground-sate phase diagram of the model can be derived with high precision. The nontrivial gapped Haldane phase shows up in between the trivial gapped even Haldane and N{e}el phases, appearing at large single-ion and spin--exchange interaction anisotropies, respectively. We furthermore carve out a characteristic degeneracy of the lowest entanglement level in the topological Haldane phase, which is determined using a conventional finite-system DMRG technique with both periodic and open boundary conditions. Defining the spin and neutral gaps in analogy to the single-particle and neutral gaps in the intimately connected extended Bose-Hubbard model, we show that the excitation gaps in the spin model qualitatively behave just as for the bosonic system. We finally compute the dynamical spin structure factor in the three different gapped phases and find significant differences in the intensity maximum which might be used to distinguish these phases experimentally.
We show that a proper consideration of the contribution of Trugman loops leads to a fairly low effective mass for a hole moving in a square lattice Ising antiferromagnet, if the bare hopping and the exchange energy scales are comparable. This contrad icts the general view that because of the absence of spin fluctuations, this effective mass must be extremely large. Moreover, in the presence of a transverse magnetic field, we show that the effective hopping integrals acquire an unusual dependence on the magnetic field, through Aharonov-Bohm interference, in addition to significant retardation effects. The effect of the Aharonov-Bohm interference on the cyclotron frequency (for small magnetic fields) and the Hofstadter butterfly (for large magnetic fields) is analyzed.
178 - Mona Berciu , Holger Fehske 2010
We generalize the momentum average approximation to study the properties of single polarons in models with boson affected hopping, where the fermion-boson scattering depends explicitly on both the fermions and the bosons momentum. As a specific examp le, we investigate the Edwards fermion-boson model in both one and two dimensions. In one dimension, this allows us to compare our results with exact diagonalization results, to validate the accuracy of our approximation. The generalization to two-dimensional lattices allows us to calculate the polarons quasiparticle weight and dispersion throughout the Brillouin zone and to demonstrate the importance of Trugman loops in generating a finite effective mass even when the free fermion has an infinite mass.
We describe the formation and properties of Holstein polarons in the entire parameter regime. Our presentation focuses on the polaron mass and radius, which we obtain with an improved numerical technique. It is based on the combination of variational exact diagonalization with an improved construction of phonon states, providing results even for the strong coupling adiabatic regime. In particular we can describe the formation of large and heavy adiabatic polarons. A comparison of the polaron mass for the one and three dimensional situation explains how the different properties in the static oscillator limit determine the behavior in the adiabatic regime. The transport properties of large and small polarons are characterized by the f-sum rule and the optical conductivity. Our calculations are approximation-free and have negligible numerical error. This allows us to give a conclusive and impartial description of polaron formation. We finally discuss the implications of our results for situations beyond the Holstein model.
We study Holstein polarons in three-dimensional anisotropic materials. Using a variational exact diagonalization technique we provide highly accurate results for the polaron mass and polaron radius. With these data we discuss the differences between polaron formation in dimension one and three, and at small and large phonon frequency. Varying the anisotropy we demonstrate how a polaron evolves from a one-dimensional to a three-dimensional quasiparticle. We thereby resolve the issue of polaron stability in quasi-one-dimensional substances and clarify to what extent such polarons can be described as one-dimensional objects. We finally show that even the local Holstein interaction leads to an enhancement of anisotropy in charge carrier motion.
We propose a new concept for the dynamics of a quantum bath, the Chebyshev space, and a new method based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that exactly represents the fermionic or bosonic bat h degrees of freedom, without a discretization of the bath density of states. Relying on Chebyshev expansions the Chebyshev space representation of a bath has very favorable properties with respect to extremely precise and efficient calculations of groundstate properties, static and dynamical correlations, and time-evolution for a great variety of quantum systems. The aim of the present work is to introduce the Chebyshev space in detail and to demonstrate the capabilities of the Chebyshev space method. Although the central idea is derived in full generality the focus is on model systems coupled to fermionic baths. In particular we address quantum impurity problems, such as an impurity in a host or a bosonic impurity with a static barrier, and the motion of a wave packet on a chain coupled to leads. For the bosonic impurity, the phase transition from a delocalized electron to a localized polaron in arbitrary dimension is detected. For the wave packet on a chain, we show how the Chebyshev space method implements different boundary conditions, including transparent boundary conditions replacing infinite leads. Furthermore the self-consistent solution of the Holstein model in infinite dimension is calculated. With the examples we demonstrate how highly accurate results for system energies, correlation and spectral functions, and time-dependence of observables are obtained with modest computational effort.
Exciton-polaron formation in one-dimensional lattice models with short or long-range carrier-phonon interaction is studied by quantum Monte Carlo simulations. Depending on the relative sign of electron and hole-phonon coupling, the exciton-polaron si ze increases or decreases with increasing interaction strength. Quantum phonon fluctuations determine the (exciton-)polaron size and yield translation-invariant states at all finite couplings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا