ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum average approximation for models with boson-modulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass

180   0   0.0 ( 0 )
 نشر من قبل Mona Berciu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the momentum average approximation to study the properties of single polarons in models with boson affected hopping, where the fermion-boson scattering depends explicitly on both the fermions and the bosons momentum. As a specific example, we investigate the Edwards fermion-boson model in both one and two dimensions. In one dimension, this allows us to compare our results with exact diagonalization results, to validate the accuracy of our approximation. The generalization to two-dimensional lattices allows us to calculate the polarons quasiparticle weight and dispersion throughout the Brillouin zone and to demonstrate the importance of Trugman loops in generating a finite effective mass even when the free fermion has an infinite mass.

قيم البحث

اقرأ أيضاً

77 - Tao Hong , Y. Qiu , M. Matsumoto 2016
The notion of a quasiparticle, such as a phonon, a roton, or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra, and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.
We present a 57Fe Mossbauer spectroscopy study of the two incommensurate magnetic phases in the multiferroic material FeVO4. We devise lineshapes appropriate for planar elliptical and collinear modulated magnetic structures and show that they reprodu ce very well the Mossbauer spectra in FeVO4, in full qualitative agreement with a previous neutron diffraction study. Quantitatively, our spectra provide precise determinations of the characteristics of the elliptical and modulated structures which are in good agreement with the neutron diffraction results. We find that the hyperfine field elliptical modulation persists as T goes to 0, which we attribute to an anisotropy of the hyperfine interaction since a moment modulation is forbidden at T=0 for a spin only ion like Fe3+.
Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We st udy this problem by means of Dyson-Schwinger equation approach after considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is examined by comparing to the well-established results obtained at zero temperature.
The unique surface edge states make topological insulators a primary focus among different applications. In this article, we synthesized a large single crystal of Niobium(Nb)-doped Bi2Se3 topological insulator (TI) with a formula Nb0.25Bi2Se3. The si ngle crystal has characterized by using various techniques such as Powder X-ray Diffractometer (PXRD), DC magnetization measurements, Raman, and Ultrafast transient absorption spectroscopy (TRUS). There are (00l) reflections in the PXRD, and Superconductivity ingrown crystal is evident from clearly visible diamagnetic transition at 2.5K in both FC and ZFC measurements. The Raman spectroscopy is used to find the different vibrational modes in the sample. Further, the sample is excited by a pump of 1.90 eV, and a kinetic decay profile at 1.38 eV is considered for terahertz analysis. The differential decay profile has different vibrations, and these oscillations have analyzed in terms of terahertz. This article not only provides evidence of terahertz generation in Nb-doped sample along with undoped sample but also show that the dopant atom changes the dynamics of charge carriers and thereby the shift in the Terahertz frequency response. In conclusion, a suitable dopant can be used as a processor for the tunability of terahertz frequency in TI.
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation ( RPA) has played an important role ever since the conception of the OEP formalism. However, the solution of the OEP equation is computationally fairly expensive and has to be done in a self-consistent way. So far, large scale solid state applications have therefore been performed only using the quasiparticle approximation (QPA), neglecting certain dynamical screening effects. We obtain the exact RPA-OEP for 15 semiconductors and insulators by direct solution of the linearized Sham-Schluter equation. We investigate the accuracy of the QPA on Kohn-Sham band gaps and dielectric constants, and comment on the issue of self-consistency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا