ترغب بنشر مسار تعليمي؟ اضغط هنا

In 2005 Dullin et al. proved that the non-zero vector of Maslov indices is an eigenvector with eigenvalue 1 of the monodromy matrices of an integrable Hamiltonian system. We take a close look at the geometry behind this result and extend it to a more general context. We construct a bundle morphism defined on the lattice bundle of an (general) integrable system, which can be seen as a generalization of the vector of Maslov indices. The non-triviality of this bundle morphism implies the existence of common eigenvectors with eigenvalue 1 of the monodromy matrices, and gives rise to a corank 1 toric foliation refining the original one induced by the integrable system. Furthermore, we show that in the case where the system has 2 degrees of freedom, this implies the global existence of a free S^{1} action.
We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.
We study fiber bundles where the fibers are not a group $G$, but a free $G$-space with disjoint orbits. These bundles closely resemble principal bundles, hence we call them semi-principal bundles. The study of such bundles is facilitated by defining the notion of a basis of a $G$-set, in analogy with a basis of a vector space. The symmetry group of these bases is a wreath product. Similar to vector bundles, using the notion of a basis induces a frame bundle construction, which in this case results in a principal bundle with the wreath product as structure group. This construction can be formalized in the language of a functor, which retracts the semi-principal bundles to the principal bundles. In addition, semi-principal bundles support parallel transport just like principal bundles, and this carries over to the frame bundle.
The collinear hydrogen exchange reaction is a paradigm system for understanding chemical reactions. It is the simplest imaginable atomic system with $2$ degrees of freedom modeling a chemical reaction, yet it exhibits behaviour that is still not well understood - the reaction rate decreases as a function of energy beyond a critical value. Using lobe dynamics we show how invariant manifolds of unstable periodic orbits guide trajectories in phase space. From the structure of the invariant manifolds we deduce that insufficient transfer of energy between the degrees of freedom causes a reaction rate decrease. In physical terms this corresponds to the free hydrogen atom repelling the whole molecule instead of only one atom from the molecule. We further derive upper and lower bounds of the reaction rate, which are desirable for practical reasons.
In a recent paper entitled Winding around non-Hermitian singularities by Zhong et al., published in Nat. Commun. 9, 4808 (2018), a formalism is proposed for calculating the permutations of eigenstates that arise upon encircling (multiple) exceptional points (EPs) in the complex parameter plane of an analytic non-Hermitian Hamiltonian. The authors suggest that upon encircling EPs one should track the eigenvalue branch cuts that are traversed, and multiply the associated permutation matrices accordingly. In this comment we point out a serious shortcoming of this approach, illustrated by an explicit example that yields the wrong result for a specific loop. A more general method that has been published earlier by us and that does not suffer from this problem, is based on using fundamental loops. We briefly explain the method and list its various advantages. In addition, we argue that this method can be verified in a three wave-guide system, which then also unambiguously establishes the noncommutativity associated with encircling multiple EPs.
Investigating the possibility of applying techniques from linear systems theory to the setting of nonlinear systems has been the focus of many papers. The pseudo linear form representation of nonlinear dynamical systems has led to the concept of nonl inear eigenvalues and nonlinear eigenvectors. When the nonlinear eigenvectors do not depend on the state vector of the system, then the nonlinear eigenvalues determine the global qualitative behaviour of a nonlinear system throughout the state space. The aim of this paper is to use this fact to construct a nonlinear dynamical system of which the trajectories of the system show continual stretching and folding. We first prove that the system is globally bounded. Next, we analyse the system numerically by studying bifurcations of equilibria and periodic orbits. Chaos arises due to a period doubling cascade of periodic attractors. Chaotic attractors are presumably of Henon-like type, which means that they are the closure of the unstable manifold of a saddle periodic orbit. We also show how pseudo linear forms can be used to control the chaotic system and to synchronize two identical chaotic systems.
The defining characteristic of an exceptional point (EP) in the parameter space of a family of operators is that upon encircling the EP eigenstates are permuted. In case one encircles multiple EPs, the question arises how to properly compose the effe cts of the individual EPs. This was thought to be ambiguous. We show that one can solve this problem by considering based loops and their deformations. The theory of fundamental groups allows to generalize this technique to arbitrary degeneracy structures like exceptional lines in a three-dimensional parameter space. As permutations of three or more objects form a non-abelian group, the next question that arises is whether one can experimentally demonstrate this non-commutative behavior. This requires at least two EPs of a family of operators that have at least 3 eigenstates. A concrete implementation in a recently proposed $mathcal{PT}$ symmetric waveguide system is suggested as an example of how to experimentally check the composition law and show the non-abelian nature of non-hermitian systems with multiple EPs.
Recent studies have found an unusual way of dissociation in formaldehyde. It can be characterized by a hydrogen atom that separates from the molecule, but instead of dissociating immediately it roams around the molecule for a considerable amount of t ime and extracts another hydrogen atom from the molecule prior to dissociation. This phenomenon has been coined roaming and has since been reported in the dissociation of a number of other molecules. In this paper we investigate roaming in Chesnavichs CH$_4^+$ model. During dissociation the free hydrogen must pass through three phase space bottleneck for the classical motion, that can be shown to exist due to unstable periodic orbits. None of these orbits is associated with saddle points of the potential energy surface and hence related to transition states in the usual sense. We explain how the intricate phase space geometry influences the shape and intersections of invariant manifolds that form separatrices, and establish the impact of these phase space structures on residence times and rotation numbers. Ultimately we use this knowledge to attribute the roaming phenomenon to particular heteroclinic intersections.
In addition to the well known case of spherical coordinates the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum o f the Hamilton operator, and the $z$-components of the angular momentum and quantum Laplace-Runge-Lenz vectors obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. This means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number $n$ and the magnetic quantum number $m$ correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multi valued.
At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of micro-electromechanical systems (MEMS) in dry vacuum conditions. For a micron size plate oscillating near a surface, which mimics a frequently used setu p in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, they are of significance for fundamentally motivated experiments performed with MEMS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا