ترغب بنشر مسار تعليمي؟ اضغط هنا

In this study, we investigate the flow of money among bank accounts possessed by firms in a region by employing an exhaustive list of all the bank transfers in a regional bank in Japan, to clarify how the network of money flow is related to the econo mic activities of the firms. The network statistics and structures are examined and shown to be similar to those of a nationwide production network. Specifically, the bowtie analysis indicates what we refer to as a walnut structure with core and upstream/downstream components. To quantify the location of an individual account in the network, we used the Hodge decomposition method and found that the Hodge potential of the account has a significant correlation to its position in the bowtie structure as well as to its net flow of incoming and outgoing money and links, namely the net demand/supply of individual accounts. In addition, we used non-negative matrix factorization to identify important factors underlying the entire flow of money; it can be interpreted that these factors are associated with regional economic activities.One factor has a feature whereby the remittance source is localized to the largest city in the region, while the destination is scattered. The other factors correspond to the economic activities specific to different local places.This study serves as a basis for further investigation on the relationship between money flow and economic activities of firms.
Every nation prioritizes the inclusive economic growth and development of all regions. However, we observe that economic activities are clustered in space, which results in a disparity in per-capita income among different regions. A complexity-based method was proposed by Hidalgo and Hausmann [PNAS 106, 10570-10575 (2009)] to explain the large gaps in per-capita income across countries. Although there have been extensive studies on countries economic complexity using international export data, studies on economic complexity at the regional level are relatively less studied. Here, we study the industrial sector complexity of prefectures in Japan based on the basic information of more than one million firms. We aggregate the data as a bipartite network of prefectures and industrial sectors. We decompose the bipartite network as a prefecture-prefecture network and sector-sector network, which reveals the relationships among them. Similarities among the prefectures and among the sectors are measured using a metric. From these similarity matrices, we cluster the prefectures and sectors using the minimal spanning tree technique.The computed economic complexity index from the structure of the bipartite network shows a high correlation with macroeconomic indicators, such as per-capita gross prefectural product and prefectural income per person. We argue that this index reflects the present economic performance and hidden potential of the prefectures for future growth.
We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well known and simple model of exponential random graph is the Bernoulli model which shows the links in the bank-firm network are not independent from each other. Another popular exponential random graph model, the two star model, indicates that the bank-firms are in a state where macroscopic variables of the system can show large fluctuations. Moreover, the presence of high fluctuations reflect a fragile nature of the bank-firm network.
Inter-firm organizations, which play a driving role in the economy of a country, can be represented in the form of a customer-supplier network. Such a network exhibits a heavy-tailed degree distribution, disassortative mixing and a prominent communit y structure. We analyze a large-scale data set of customer-supplier relationships containing data from one million Japanese firms. Using a directed network framework, we show that the production network exhibits the characteristics listed above. We conduct detailed investigations to characterize the communities in the network. The topology within smaller communities is found to be very close to a tree-like structure but becomes denser as the community size increases. A large fraction (~40%) of firms with relatively small in- or out-degrees have customers or suppliers solely from within their own communities, indicating interactions of a highly local nature. The interaction strengths between communities as measured by the inter-community link weights follow a highly heterogeneous distribution. We further present the statistically significant over-expressions of different prefectures and sectors within different communities.
77 - Hiroyasu Inoue 2015
This study examine the difference in the size of avalanches among industries triggered by demand shocks, which can be rephrased by control of the economy or fiscal policy, and by using the production-inventory model and observed data. We obtain the f ollowing results. (1) The size of avalanches follows power law. (2) The mean sizes of avalanches for industries are diverse but their standard deviations highly overlap. (3) We compare the simulation with an input-output table and with the actual policies. They are compatible.
We study the Japan and U.S. patent records of several decades to demonstrate the effect of collaboration on innovation. We find that statistically inventor teams slightly outperform solo inventors while company teams perform equally well as solo comp anies. By tracking the performance record of individual teams we find that inventor teams performance generally degrades with more repeat collaborations. Though company teams performance displays strongly bursty behavior, long-term collaboration does not significantly help innovation at all. To systematically study the effect of repeat collaboration, we define the repeat collaboration number of a team as the average number of collaborations over all the teammate pairs. We find that mild repeat collaboration improves the performance of Japanese inventor teams and U.S. company teams. Yet, excessive repeat collaboration does not significantly help innovation at both the inventor and company levels in both countries. To control for unobserved heterogeneity, we perform a detailed regression analysis and the results are consistent with our simple observations. The presented results reveal the intricate effect of collaboration on innovation, which may also be observed in other creative projects.
48 - Hiroyasu Inoue 2012
Companies are exposed to rigid competition, so they seek how best to improve the capabilities of their innovations. One strategy is to collaborate with other companies in order to speed up their own innovations. Such inter-company collaborations are conducted by inventors belonging to the companies. At the same time, the inventors also seem to be affected by past collaborations between companies. Therefore, interdependency of two networks, namely inventor and company networks, exists. This paper discusses a model that replicates two-layer networks extracted from patent data of Japan and the United States in terms of degree distributions. The model replicates two-layer networks with the interdependency. Moreover it is the only model that uses local information, while other models have to use overall information, which is unrealistic. In addition, the proposed model replicates empirical data better than other models.
32 - Hiroyasu Inoue 2010
Many firms these days are opting to specialize rather than generalize as a way of maintaining their competitiveness. Consequently, they cannot rely solely on themselves, but must cooperate by combining their advantages. To obtain the actual condition for this cooperation, a multi-layered network based on two different types of data was investigated. The first type was transaction data from Japanese firms. The network created from the data included 961,363 firms and 7,808,760 links. The second type of data were from joint-patent applications in Japan. The joint-patent application network included 54,197 nodes and 154,205 links. These two networks were merged into one network. The first anaysis was based on input-output tables and three different tables were compared. The correlation coefficients between tables revealed that transactions were more strongly tied to joint-patent applications than the total amount of money. The total amount of money and transactions have few relationships and these are probably connected to joint-patent applications in different mechanisms. The second analysis was conducted based on the p* model. Choice, multiplicity, reciprocity, multi-reciprocity and transitivity configurations were evaluated. Multiplicity and reciprocity configurations were significant in all the analyzed industries. The results for multiplicity meant that transactions and joint-patent application links were closely related. Multi-reciprocity and transitivity configurations were significant in some of the analyzed industries. It was difficult to find any common characteristics in the industries. Bayesian networks were used in the third analysis. The learned structure revealed that if a transaction link between two firms is known, the categories of firms industries do not affect to the existence of a patent link.
Technological innovation has extensively been studied to make firms sustainable and more competitive. Within this context, the most important recent issue has been the dynamics of collaborative innovation among firms. We therefore investigated a pate nt network, especially focusing on its spatial characteristics. The results can be summarized as follows. (1) The degree distribution in a patent network follows a power law. A firm can then be connected to many firms via hubs connected to the firm. (2) The neighbors average degree has a null correlation, but the clustering coefficient has a negative correlation. The latter means that there is a hierarchical structure and bridging different modules may shorten the paths between the nodes in them. (3) The distance of links not only indicates the regional accumulations of firms, but the importance of time it takes to travel, which plays a key role in creating links. (4) The ratio of internal links in cities indicates that we have to consider the existing links firms have to facilitate the creation of new links.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا