ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray emission generated through solar-wind charge exchange (SWCX) is known to contaminate X-ray observation data, the amount of which is often significant or even dominant, particularly in the soft X-ray band, when the main target is comparatively w eak diffuse sources, depending on the space weather during the observation. In particular, SWCX events caused by interplanetary coronal mass ejections (ICMEs) tend to be spectrally rich and to provide critical information about the metal abundance in the ICME plasma. We analyzed the SN1006 background data observed with Suzaku on 2005 September 11 shortly after an X6-class solar flare, signatures of which were separately detected together with an associated ICME. We found that the data include emission lines from a variety of highly ionized ions generated through SWCX. The relative abundances of the detected ions were found to be consistent with those in past ICME-driven SWCX events. Thus, we conclude that this event was ICME-driven. In addition, we detected a sulfur XVI line for the first time as one from the SWCX emission, the fact of which suggests that it is the most spectrally-rich SWCX event ever observed. We suggest that observations of ICME-driven SWCX events can provide a unique probe to study the population of highly-ionized ions in the plasma, which is difficult to measure in currently-available in-situ observations.
We carry out spatially resolved spectral analysis with a physical scale of $sim$10 pc in X-ray for the superbubble 30 Dor C, which has the largest diameter of $sim$80 pc and the brightest non-thermal emission in superbubbles for the first time. We ai m at investigating spatial variation of the physical properties of non-thermal emission as detected in some supernova remnants in order to study particle acceleration in a superbubble. We demonstrated that non-thermal components are detected in all the regions covering the entire field of 30 Dor C. The spectra in the west region of 30 Dor C can be described with a combination of the thermal and non-thermal components while the spectra in the east region can be fitted with the non-thermal component alone. The photon index and absorption corrected intensity in 2-10 keV of the non-thermal component show spatial variation from $sim$2.0 to $sim$3.7 and (4-130) $times$ 10$^{-8}$ erg~s$^{-1}$~cm$^{-2}$~str$^{-1}$, respectively, and the negative correlation between the non-thermal physical properties is observed. The temperature and normalization of the thermal component also vary within a range of $sim$0.2-0.3 keV and $sim$0.2-7 $times$ 10$^{17}$ cm$^{-5}$ str$^{-1}$, respectively, and the positive correlation between the photon index and the normalization is also detected. We revealed the correlations in a supperbubble for the first time as is the case in SNRs, which suggests the possibility that the same acceleration mechanism works also in the supperbubble.
In this paper, the Suzaku X-ray data of the Galactic Supernova Remnant (SNR) candidate G323.7$-$1.0 are analyzed to search for X-ray emission. Spatially-extended enhancements in the 6.4 keV line and in soft X-rays are found inside or on the radio she ll. The soft X-ray enhancement would be the hottest part of the shell-like X-ray emission along the radio shell. The 6.4 keV line enhancement is detected at a significance level of $4.1 sigma$. The lower limit of the equivalent width (EW) is 1.2 keV. The energy centroid of the 6.4 keV line is $6.40 pm 0.04$ keV, indicating that the iron is less ionized than the Ne-like state. If the 6.4 keV line originates from ionizing non-equilibrium thermal plasma, presence of iron-rich ejecta in a low-ionization state is required, which is disfavored by the relatively old age of the SNR. The 6.4 keV line enhancement would be due to K-shell ionization of iron atoms in a dense interstellar medium by high-energy particles. Since there is no irradiating X-ray source, the origin of the 6.4 keV line enhancement is not likely the photoionization. The large EW can only be explained by K-shell ionization due to cosmic-ray protons with an energy of $sim 10$ MeV, which might be generated by the shock acceleration in G323.7$-$1.0.
GRS 1747$-$312 is a neutron star Low-Mass X-ray Binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. During its outbursts, periodic eclipses were known to occur. Observations for the outbursts were performed with Chandra in 2004 and Swift in 2013. XMM-Newton observed its quiescent state in 2004. In addition, when Suzaku observed it in 2009 as a part of Galactic center mapping observations, GRS 1747$-$312 was found to be in a low luminosity state with $L_{rm x} sim 1.2 times 10^{35}$ erg s$^{-1}$. All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. During the Chandra and Swift observations, we found clear flux decreases at the expected time of the eclipses. During the Suzaku observation, however, there were no clear signs for the predicted eclipses. The lapse of the predicted eclipses during the Suzaku observation can be explained by a contaminant source quite close to GRS 1747$-$312. When GRS 1747$-$312 is in the quiescent state, we observe X-rays from the contaminant source rather than from GRS 1747$-$312. However, we have no clear evidence for the contaminant source in our data. The lapse might also be explained by thick material ($N_{rm H} > 10^{24}$ cm$^{-2}$ ) between the neutron star and the companion star, though the origin of the thick material is not clear.
With the Suzaku satellite, we observed an unidentified TeV gamma-ray source HESS J1741$-$302 and its surroundings. No diffuse or point-like X-ray sources are detected from the bright southern emission peak of HESS J1741$-$302. From its neighborhood, we found a new intermediate polar candidate at the position of $(alpha, delta)_{rm J2000.0} = (timeform{17h40m35.6s}, timeform{-30D14m16s})$, which is designated as Suzaku J174035.6$-$301416. The spectrum of Suzaku J174035.6$-$301416 exhibits emission lines at the energy of 6.4, 6.7 and 7.0 keV, which can be assigned as the K$alpha$ lines from neutral, He-like and H-like iron, respectively. A coherent pulsation is found at a period of 432.1 $pm$ 0.1 s. The pulse profile is quasi-sinusoidal in the hard X-ray band (4$-$8 keV), but is more complicated in the soft X-ray band (1$-$3 keV). The moderate period of pulsation, the energy flux, and the presence of the iron K$alpha$ lines indicate that Suzaku J174035.6$-$301416 is likely an intermediate polar, a subclass of magnetized white dwarf binaries (cataclysmic variables). Based on these discoveries, we give some implications on the origin of GCDX and brief comments on HESS J1741$-$302 and PSR B1737$-$30.
The charge transfer inefficiency (CTI) of the X-ray CCDs on board the Suzaku satellite (X-ray Imaging Spectrometers; XIS) has increased since the launch due to radiation damage, and the energy resolution has been degraded. To improve the CTI, we have applied a spaced-row charge injection (SCI) technique to the XIS in orbit; by injecting charges into CCD rows periodically, the CTI is actively decreased. The CTI in the SCI mode depends on the distance between a signal charge and a preceding injected row, and the pulse height shows periodic positional variations. Using in-flight data of onboard calibration sources and of the strong iron line from the Perseus cluster of galaxies, we studied the variation in detail. We developed a new method to correct the variation. By applying the new method, the energy resolution (FWHM) at 5.9 keV at March 2008 is ~155 eV for the front-illuminated CCDs and ~175 eV for the back-illuminated CCD.
The X-ray Imaging Spectrometer (XIS) on board the Suzaku satellite is an X-ray CCD camera system that has superior performance such as a low background, high quantum efficiency, and good energy resolution in the 0.2-12 keV band. Because of the radiat ion damage in orbit, however, the charge transfer inefficiency (CTI) has increased, and hence the energy scale and resolution of the XIS has been degraded since the launch of July 2005. The CCD has a charge injection structure, and the CTI of each column and the pulse-height dependence of the CTI are precisely measured by a checker flag charge injection (CFCI) technique. Our precise CTI correction improved the energy resolution from 230 eV to 190 eV at 5.9 keV in December 2006. This paper reports the CTI measurements with the CFCI experiments in orbit. Using the CFCI results, we have implemented the time-dependent energy scale and resolution to the Suzaku calibration database.
SAX J1748.2$-$2808 is a unique X-ray object with a flat spectrum and strong emission lines at 6.4--7.0 keV. The Suzaku satellite resolved the emission lines into 3 K-shell lines from neutral and highly ionized irons. A clear coherent pulsation with a period of 593-sec was found from the Suzaku and XMM-Newton archives. These facts favor that SAX J1748.2$-$2808 isan intermediate polar, a subclass of magnetized white dwarf binary (cataclysmic variable: CV). This paper reports on details of the findings and discusses the origin of this source.
We investigate long-term X-ray behaviors from the Sgr B2 complex using archival data of the X-ray satellites Suzaku, XMM-Newton, Chandra and ASCA. The observed region of the Sgr B2 complex includes two prominent spots in the Fe I K-$alpha$ line at 6. 40 keV, a giant molecular cloud M 0.66$-$0.02 known as the ``Sgr B2 cloud and an unusual X-ray source G 0.570$-$0.018. Although these 6.40 keV spots have spatial extensions of a few pc scale, the morphology and flux of the 6.40 keV line has been time variable for 10 years, in contrast to the constant flux of the Fe XXV-K$alpha$ line at 6.67 keV in the Galactic diffuse X-ray emission. This time variation is mostly due to M 0.66$-$0.02; the 6.40 keV line flux declined in 2001 and decreased to 60% in the time span 1994--2005. The other spot G 0.570$-$0.018 is found to be conspicuous only in the Chandra observation in 2000. From the long-term time variability ($sim$10 years) of the Sgr B2 complex, we infer that the Galactic Center black hole Sgr A$^*$ was X-ray bright in the past 300 year and exhibited a time variability with a period of a few years.
We report the Suzaku results of HESS J1614-518, which is the brightest extended TeV gamma-ray source discovered in the Galactic plane survey conducted using the H.E.S.S. telescope. We discovered three X-ray objects in the field of view of the X-ray I maging Spectrometer (XIS), which were designated as Suzaku J1614-5141 (src A), Suzaku J1614-5152 (src B), and Suzaku J1614-5148 (src C). Src A is an extended source located at the peak position of HESS J1614-518, and therefore it is a plausible counterpart to HESS J1614-518. The X-ray flux in the 2-10 keV band is 5e-13 erg/s/cm^2, which is an order of magnitude smaller than the TeV flux. The photon index is 1.7, which is smaller than the canonical value of synchrotron emissions from high-energy electrons found in some supernova remnants. These findings present a challenge to models in which the origin of the TeV emission is the inverse Compton scattering of the cosmic microwave background by accelerated electrons that emit X-rays via synchrotron emission. Src B is located at a relatively dim region in the TeV band image; however, its hydrogen column density is the same as that of src A. Therefore, src B may also be physically related to HESS J1614-518. Src C is a foreground late-type B star. We also discovered a soft extended X-ray emission near HESS J1614-518.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا