ﻻ يوجد ملخص باللغة العربية
GRS 1747$-$312 is a neutron star Low-Mass X-ray Binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. During its outbursts, periodic eclipses were known to occur. Observations for the outbursts were performed with Chandra in 2004 and Swift in 2013. XMM-Newton observed its quiescent state in 2004. In addition, when Suzaku observed it in 2009 as a part of Galactic center mapping observations, GRS 1747$-$312 was found to be in a low luminosity state with $L_{rm x} sim 1.2 times 10^{35}$ erg s$^{-1}$. All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. During the Chandra and Swift observations, we found clear flux decreases at the expected time of the eclipses. During the Suzaku observation, however, there were no clear signs for the predicted eclipses. The lapse of the predicted eclipses during the Suzaku observation can be explained by a contaminant source quite close to GRS 1747$-$312. When GRS 1747$-$312 is in the quiescent state, we observe X-rays from the contaminant source rather than from GRS 1747$-$312. However, we have no clear evidence for the contaminant source in our data. The lapse might also be explained by thick material ($N_{rm H} > 10^{24}$ cm$^{-2}$ ) between the neutron star and the companion star, though the origin of the thick material is not clear.
We report the serendipitous detection with the Rossi X-ray Timing Explorer of a long and peculiar X-ray burst whose localization is consistent with one known X-ray burster (GRS 1747-312) and which occurred when that source was otherwise quiescent. Th
We studied the transient neutron-star low-mass X-ray binary GRS 1747-312, located in the globular cluster Terzan 6, in its quiescent state after its outburst in August 2004, using an archival XMM-Newton observation. A source was detected in this clus
In this paper, we report on the available X-ray data collected by INTEGRAL, Swift, and XMM-Newton during the first outburst of the INTEGRAL transient IGR J17451-3022, discovered in 2014 August. The monitoring observations provided by the JEM-X instru
We observed IGR J16194-2810 in the low/hard state with the Suzaku X-ray satellite in 2009. The source is a Symbiotic X-ray Binary (SyXB) classified as a category of a Low-Mass X-ray Binary (LMXB), since the system is composed of an M-type giant and p
Spectroscopy of the low mass X-ray binary Ser X-1 using the Gran Telescopio Canarias have revealed a ~2 hr periodic variability that is present in the three strongest emission lines. We tentatively interpret this variability as due to orbital motion,