ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a general theory of interpolation error estimates for smooth functions and inverse inequalities on anisotropic meshes. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In t he two-dimensional case, our geometric parameter is equivalent to the circumradius of a triangle. In the three-dimensional case, our geometric parameter also represents the flatness of a tetrahedron. This paper also includes corrections to an error in General theory of interpolation error estimates on anisotropic meshes (Japan Journal of Industrial and Applied Mathematics, 38 (2021) 163-191), in which Theorem 2 was incorrect.
For a tetrahedron, suppose that all internal angles of faces and all dihedral angles are less than a fixed constant $C$ that is smaller than $pi$. Then, it is said to satisfy the maximum angle condition with the constant $C$. The maximum angle condit ion is important in the error analysis of Lagrange interpolation on tetrahedrons. This condition ensures that we can obtain an error estimation, even on certain kinds of anisotropic tetrahedrons. In this paper, using two quantities that represent the geometry of tetrahedrons, we present an equivalent geometric condition to the maximum angle condition for tetrahedrons.
We investigate the piecewise linear nonconforming Crouzeix-Raviar and the lowest order Raviart-Thomas finite-element methods for the Poisson problem on three-dimensional anisotropic meshes. We first give error estimates of the Crouzeix-Raviart and th e Raviart-Thomas finite-element approximate problems. We next present the equivalence between the Raviart-Thomas finite-element method and the enriched Crouzeix-Raviart finite-element method. We emphasise that we do not impose either shape-regular or maximum-angle condition during mesh partitioning. Numerical results confirm the results that we obtained.
We propose a general theory of estimating interpolation error for smooth functions in two and three dimensions. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In the two-dimensional case, our geometric parameter is equivalent to the circumradius of a triangle. In the three-dimensional case, our geometric parameter also represents the flatness of a tetrahedron. Through the introduction of the geometric parameter, the error estimates newly obtained can be applied to cases that violate the maximum-angle condition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا