ترغب بنشر مسار تعليمي؟ اضغط هنا

61 - Herve Courtois 2014
Thermo-electric transport at the nano-scale is a rapidly developing topic, in particular in superconductor-based hybrid devices. In this review paper, we first discuss the fundamental principles of electronic cooling in mesoscopic superconducting hyb rid structures, the related limitations and applications. We review recent work performed in Grenoble on the effects of Andreev reflection, photonic heat transport, phonon cooling, as well as on an innovative fabrication technique for powerful coolers.
We inserted non-magnetic layers of Au and Cu into sputtered AlOx-based magnetic tunnel junctions and Meservey-Tedrow junctions in order to study their effect on tunnelling magnetoresistance (TMR) and spin polarization (TSP). When either Au or Cu are inserted into a Co/AlOx interface, we find that TMR and TSP remain finite and measurable for thicknesses up to several nanometres. High-resolution transmission electron microscopy shows that the Cu and Au interface layers are fully continuous when their thickness exceeds ~3 nm, implying that spin-polarized carriers penetrate the interface noble metal to dis- tances exceeding this value. A power law model based on exchange scattering is found to fit the data better than a phenomenological exponential decay. The discrepancy between these length scales and the much shorter ones reported from x-ray magnetic circular dichroism studies of magnetic proximitization is ascribed to the fact that our tunnelling transport measurements selectively probe s-like electrons close to the Fermi level. When a 0.1 nm thick Cu or Au layer is inserted within the Co, we find that the suppression of TMR and TSP is restored on a length scale of <=1 nm, indicating that this is a sufficient quantity of Co to form a fully spin-polarized band structure at the interface with the tunnel barrier.
Three-terminal superconductor (S) - normal metal (N) - superconductor (S) Josephson junctions are investigated. In a geometry where a T-shape normal metal is connected to three superconducting reservoirs, new sub-gap structures appear in the differen tial resistance for specific combinations of the superconductor chemical potentials. Those correspond to a correlated motion of Cooper pairs within the device that persist well above the Thouless energy and is consistent with the prediction of quartets formed by two entangled Cooper pairs. A simplified nonequilibrium Keldysh Greens function calculation is presented that supports this interpretation.
119 - Herve Courtois 2009
We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed.
We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously th at the hysteresis results from an increase of the normal metal electron temperature once the junction switches to the resistive state. In our geometry, the electron temperature increase is governed by the thermal resistance of the superconducting electrodes of the junction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا