ترغب بنشر مسار تعليمي؟ اضغط هنا

Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching domi nated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nature Physics, 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.
We present a Landau type theory for the non-linear elasticity of biopolymer gels with a part of the order parameter describing induced nematic order of fibers in the gel. We attribute the non-linear elastic behavior of these materials to fiber alignm ent induced by strain. We suggest an application to contact guidance of cell motility in tissue. We compare our theory to simulation of a disordered lattice model for biopolymers. We treat homogeneous deformations such as simple shear, hydrostatic expansion, and simple extension, and obtain good agreement between theory and simulation. We also consider a localized perturbation which is a simple model for a contracting cell in a medium.
The complex dynamics of intracellular calcium regulates cellular responses to information encoded in extracellular signals. Here, we study the encoding of these external signals in the context of the Li-Rinzel model. We show that by control of biophy sical parameters the information can be encoded in amplitude modulation, frequency modulation or mixed (AM and FM) modulation. We briefly discuss the possible implications of this new role of information encoding for astrocytes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا