ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray and gamma-ray observations of astrophysical objects at cosmological distances can be used to probe the energy dependence of the speed of light with high accuracy and to search for violations of Lorentz invariance and CPT symmetry at the Planck energy scale. In this conference contribution, we discuss these searches in the theoretical framework of the Standard-Model Extension. We present new limits on the dispersion relation governed by operators of mass dimension d=5 and d=6, and we discuss avenues for future progress.
In this document, we describe the scientific potential of blazar observations with a X-ray polarimetry mission like GEMS (Gravity and Extreme Magnetism SMEX). We describe five blazar science investigations that such a mission would enable: (i) the st ructure and the role of magnetic fields in AGN jets, (ii) analysis of the polarization of the synchrotron X-ray emission from AGN jets, (iii) discrimination between synchrotron self-Compton and external Compton models for blazars with inverse Compton emission in the X-ray band, (iv) a precision study of the polarization properties of the X-ray emission from Cen-A, (v) tests of Lorentz Invariance based on X-ray polarimetric observations of blazars. We conclude with a discussion of a straw man observation program and recommended accompanying multiwavelength observations.
In this paper we give a brief review of the astrophysics of active galactic nuclei (AGN). After a general introduction motivating the study of AGNs, we discuss our present understanding of the inner workings of the central engines, most likely accret ing black holes with masses between a million and ten billion solar masses. We highlight recent results concerning the jets (collimated outflows) of AGNs derived from X-ray observations (Chandra) of kpc-scale jets and gamma-ray observations of AGNs (Fermi, Cherenkov telescopes) with jets closely aligned with the lines of sight (blazars), and discuss the interpretation of these observations. Subsequently, we summarize our knowledge about the cosmic history of AGN formation and evolution. We conclude with a description of upcoming observational opportunities.
Although General Relativity (GR) has been tested extensively in the weak gravity regime, similar tests in the strong gravity regime are still missing. In this paper we explore the possibility to use X-ray spectropolarimetric observations of black hol es in X-ray binaries to distinguish between the Kerr metric and the phenomenological metrics introduced by Johannsen and Psaltis (2011) (which are not vacuum solutions of Einsteins equation) and thus to test the no-hair theorem of GR. To this end, we have developed a numerical code that calculates the radial brightness profiles of accretion disks and parallel transports the wave vector and polarization vector of photons through the Kerr and non-GR spacetimes. We used the code to predict the observational appearance of GR and non-GR accreting black hole systems. We find that the predicted energy spectra and energy dependent polarization degree and polarization direction do depend strongly on the underlying spacetime. However, for large regions of the parameter space, the GR and non-GR metrics lead to very similar observational signatures, making it difficult to observationally distinguish between the two types of models.
The current generation of Imaging Atmospheric Cherenkov Telescopes (IACTs), including the H.E.S.S., MAGIC, and VERITAS telescope arrays, have made substantial contributions to our knowledge about the structure and composition of the highly relativist ic jets from Active Galactic Nuclei (AGNs). In this paper, we discuss some of the outstanding scientific questions and give a qualitative overview of AGN related science topics which will be explored with the next-generation Cherenkov Telescope Array (CTA). CTA is expected to further constrain the structure and make-up of jets, and thus, to constrain models of jet formation, acceleration, and collimation. Furthermore, being the brightest well-established extragalactic sources of TeV {gamma}- rays, AGNs can be used to probe the EBL, intergalactic magnetic fields, and the validity of the Lorentz Invariance principle at high photon energies.
In this white paper, we discuss the concept of a next-generation X-ray mission called BEST (Black hole Evolution and Space Time). The mission concept uses a 3000 square centimeter effective area mirror (at 6 keV) to achieve unprecedented sensitivitie s for hard X-ray imaging spectrometry (5-70 keV) and for broadband X-ray polarimetry (2-70 keV). BEST can make substantial contributions to our understanding of the inner workings of accreting black holes, our knowledge about the fabric of extremely curved spacetime, and the evolution of supermassive black holes. BEST will allow for time resolved studies of accretion disks. With a more than seven times larger mirror area and a seven times wider bandpass than GEMS, BEST will take X-ray polarimetry to a new level: it will probe the time variability of the X-ray polarization from stellar mass and supermassive black holes, and it will measure the polarization properties in 30 independent energy bins. These capabilities will allow BEST to conduct tests of accretion disk models and the underlying spacetimes. With three times larger mirror area and ten times better angular resolution than NuSTAR, BEST will be able to make deep field observations with a more than 15 times better sensitivity than NuSTAR. The mission will be able to trace the evolution of obscured and unobscured black holes in the redshift range from zero to six, covering the most important epoch of supermassive black hole growth. The hard X-ray sensitivity of BEST will enable a deep census of non-thermal particle populations. BEST will give us insights into AGN feedback by measuring the particle luminosity injected by AGNs into the interstellar medium (ISM) of their hosts, and will map the emission from particles accelerated at large scale structure shocks. Finally, BEST has the potential to constrain the equation of state of neutron stars (NS).
NASAs Small Explorer Mission GEMS (Gravity and Extreme Magnetism SMEX), scheduled for launch in 2014, will have the sensitivity to detect and measure the linear polarization properties of the 0.5 keV and 2-10 keV X-ray emission of a considerable numb er of galactic and extragalactic sources. The prospect of sensitive X-ray polarimetry justifies a closer look at the polarization properties of the basic emission mechanisms. In this paper, we present analytical and numerical calculations of the linear polarization properties of inverse Compton scattered radiation. We describe a generally applicable formalism that can be used to numerically compute the polarization properties in the Thomson and Klein-Nishina regimes. We use the code to perform for the first time a detailed comparison of numerical results and the earlier analytical results derived by Bonometto et al. (1970) for scatterings in the Thomson regime. Furthermore, we use the numerical formalism to scrutinize the polarization properties of synchrotron self-Compton emission, and of inverse Compton radiation emitted in the Klein-Nishina regime. We conclude with a discussion of the scientific potential of future GEMS observations of blazars. The GEMS mission will be able to confirm the synchrotron origin of the low-energy emission component from high frequency peaked BL Lac objects. Furthermore, the observations have the potential to decide between a synchrotron self-Compton and external-Compton origin of the high-energy emission component from flat spectrum radio quasars and low frequency peaked BL Lac objects.
X-ray polarimetry has the potential to make key-contributions to our understanding of galactic compact objects like binary black hole systems and neutron stars, and extragalactic objects like active galactic nuclei, blazars, and Gamma Ray Bursts. Fur thermore, several particle astrophysics topics can be addressed including uniquely sensitive tests of Lorentz invariance. In the energy range from 10 keV to several MeV, Compton polarimeters achieve the best performance. In this paper we evaluate the benefit that comes from using the azimuthal and polar angles of the Compton scattered photons in the analysis, rather than using the azimuthal scattering angles alone. We study the case of an ideal Compton polarimeter and show that a Maximum Likelihood analysis which uses the two scattering angles lowers the Minimum Detectable Polarization (MDP) by ~20% compared to a standard analysis based on the azimuthal scattering angles alone. The accuracies with which the polarization fraction and the polarization direction can be measured improve by a similar amount. We conclude by discussing potential applications of Maximum Likelihood analysis methods for various polarimeter experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا