ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllable scene synthesis consists of generating 3D information that satisfy underlying specifications. Thereby, these specifications should be abstract, i.e. allowing easy user interaction, whilst providing enough interface for detailed control. Scene graphs are representations of a scene, composed of objects (nodes) and inter-object relationships (edges), proven to be particularly suited for this task, as they allow for semantic control on the generated content. Previous works tackling this task often rely on synthetic data, and retrieve object meshes, which naturally limits the generation capabilities. To circumvent this issue, we instead propose the first work that directly generates shapes from a scene graph in an end-to-end manner. In addition, we show that the same model supports scene modification, using the respective scene graph as interface. Leveraging Graph Convolutional Networks (GCN) we train a variational Auto-Encoder on top of the object and edge categories, as well as 3D shapes and scene layouts, allowing latter sampling of new scenes and shapes.
Despite recent advancements in single-domain or single-object image generation, it is still challenging to generate complex scenes containing diverse, multiple objects and their interactions. Scene graphs, composed of nodes as objects and directed-ed ges as relationships among objects, offer an alternative representation of a scene that is more semantically grounded than images. We hypothesize that a generative model for scene graphs might be able to learn the underlying semantic structure of real-world scenes more effectively than images, and hence, generate realistic novel scenes in the form of scene graphs. In this work, we explore a new task for the unconditional generation of semantic scene graphs. We develop a deep auto-regressive model called SceneGraphGen which can directly learn the probability distribution over labelled and directed graphs using a hierarchical recurrent architecture. The model takes a seed object as input and generates a scene graph in a sequence of steps, each step generating an object node, followed by a sequence of relationship edges connecting to the previous nodes. We show that the scene graphs generated by SceneGraphGen are diverse and follow the semantic patterns of real-world scenes. Additionally, we demonstrate the application of the generated graphs in image synthesis, anomaly detection and scene graph completion.
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
We present a method that tackles the challenge of predicting color and depth behind the visible content of an image. Our approach aims at building up a Layered Depth Image (LDI) from a single RGB input, which is an efficient representation that arran ges the scene in layers, including originally occluded regions. Unlike previous work, we enable an adaptive scheme for the number of layers and incorporate semantic encoding for better hallucination of partly occluded objects. Additionally, our approach is object-driven, which especially boosts the accuracy for the occluded intermediate objects. The framework consists of two steps. First, we individually complete each object in terms of color and depth, while estimating the scene layout. Second, we rebuild the scene based on the regressed layers and enforce the recomposed image to resemble the structure of the original input. The learned representation enables various applications, such as 3D photography and diminished reality, all from a single RGB image.
While conventional depth estimation can infer the geometry of a scene from a single RGB image, it fails to estimate scene regions that are occluded by foreground objects. This limits the use of depth prediction in augmented and virtual reality applic ations, that aim at scene exploration by synthesizing the scene from a different vantage point, or at diminished reality. To address this issue, we shift the focus from conventional depth map prediction to the regression of a specific data representation called Layered Depth Image (LDI), which contains information about the occluded regions in the reference frame and can fill in occlusion gaps in case of small view changes. We propose a novel approach based on Convolutional Neural Networks (CNNs) to jointly predict depth maps and foreground separation masks used to condition Generative Adversarial Networks (GANs) for hallucinating plausible color and depths in the initially occluded areas. We demonstrate the effectiveness of our approach for novel scene view synthesis from a single image.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا