ﻻ يوجد ملخص باللغة العربية
Controllable scene synthesis consists of generating 3D information that satisfy underlying specifications. Thereby, these specifications should be abstract, i.e. allowing easy user interaction, whilst providing enough interface for detailed control. Scene graphs are representations of a scene, composed of objects (nodes) and inter-object relationships (edges), proven to be particularly suited for this task, as they allow for semantic control on the generated content. Previous works tackling this task often rely on synthetic data, and retrieve object meshes, which naturally limits the generation capabilities. To circumvent this issue, we instead propose the first work that directly generates shapes from a scene graph in an end-to-end manner. In addition, we show that the same model supports scene modification, using the respective scene graph as interface. Leveraging Graph Convolutional Networks (GCN) we train a variational Auto-Encoder on top of the object and edge categories, as well as 3D shapes and scene layouts, allowing latter sampling of new scenes and shapes.
3D object detector based on Hough voting achieves great success and derives many follow-up works. Despite constantly refreshing the detection accuracy, these works suffer from handcrafted components used to eliminate redundant boxes, and thus are non
Current people detectors operate either by scanning an image in a sliding window fashion or by classifying a discrete set of proposals. We propose a model that is based on decoding an image into a set of people detections. Our system takes an image a
We propose 3DETR, an end-to-end Transformer based object detection model for 3D point clouds. Compared to existing detection methods that employ a number of 3D-specific inductive biases, 3DETR requires minimal modifications to the vanilla Transformer
3D single object tracking is a key issue for autonomous following robot, where the robot should robustly track and accurately localize the target for efficient following. In this paper, we propose a 3D tracking method called 3D-SiamRPN Network to tra
Reliable and accurate 3D object detection is a necessity for safe autonomous driving. Although LiDAR sensors can provide accurate 3D point cloud estimates of the environment, they are also prohibitively expensive for many settings. Recently, the intr