ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic time-series forecasting enables reliable decision making across many domains. Most forecasting problems have diverse sources of data containing multiple modalities and structures. Leveraging information as well as uncertainty from these data sources for well-calibrated and accurate forecasts is an important challenging problem. Most previous work on multi-modal learning and forecasting simply aggregate intermediate representations from each data view by simple methods of summation or concatenation and do not explicitly model uncertainty for each data-view. We propose a general probabilistic multi-view forecasting framework CAMul, that can learn representations and uncertainty from diverse data sources. It integrates the knowledge and uncertainty from each data view in a dynamic context-specific manner assigning more importance to useful views to model a well-calibrated forecast distribution. We use CAMul for multiple domains with varied sources and modalities and show that CAMul outperforms other state-of-art probabilistic forecasting models by over 25% in accuracy and calibration.
Green Security Games (GSGs) have been successfully used in the protection of valuable resources such as fisheries, forests and wildlife. While real-world deployment involves both resource allocation and subsequent coordinated patrolling with communic ation and real-time, uncertain information, previous game models do not fully address both of these stages simultaneously. Furthermore, adopting existing solution strategies is difficult since they do not scale well for larger, more complex variants of the game models. We therefore first propose a novel GSG model that combines defender allocation, patrolling, real-time drone notification to human patrollers, and drones sending warning signals to attackers. The model further incorporates uncertainty for real-time decision-making within a team of drones and human patrollers. Second, we present CombSGPO, a novel and scalable algorithm based on reinforcement learning, to compute a defender strategy for this game model. CombSGPO performs policy search over a multi-dimensional, discrete action space to compute an allocation strategy that is best suited to a best-response patrolling strategy for the defender, learnt by training a multi-agent Deep Q-Network. We show via experiments that CombSGPO converges to better strategies and is more scalable than comparable approaches. Third, we provide a detailed analysis of the coordination and signaling behavior learnt by CombSGPO, showing group formation between defender resources and patrolling formations based on signaling and notifications between resources. Importantly, we find that strategic signaling emerges in the final learnt strategy. Finally, we perform experiments to evaluate these strategies under different levels of uncertainty.
India accounts for 11% of maternal deaths globally where a woman dies in childbirth every fifteen minutes. Lack of access to preventive care information is a significant problem contributing to high maternal morbidity and mortality numbers, especiall y in low-income households. We work with ARMMAN, a non-profit based in India, to further the use of call-based information programs by early-on identifying women who might not engage on these programs that are proven to affect health parameters positively.We analyzed anonymized call-records of over 300,000 women registered in an awareness program created by ARMMAN that uses cellphone calls to regularly disseminate health related information. We built robust deep learning based models to predict short term and long term dropout risk from call logs and beneficiaries demographic information. Our model performs 13% better than competitive baselines for short-term forecasting and 7% better for long term forecasting. We also discuss the applicability of this method in the real world through a pilot validation that uses our method to perform targeted interventions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا