ترغب بنشر مسار تعليمي؟ اضغط هنا

The association between productivity and impact of scientific production is a long-standing debate in science that remains controversial and poorly understood. Here we present a large-scale analysis of the association between yearly publication numbe rs and average journal-impact metrics for the Brazilian scientific elite. We find this association to be discipline-specific, career-age dependent, and similar among researchers with outlier and non-outlier performance. Outlier researchers either outperform in productivity or journal prestige, but they rarely do so in both categories. Non-outliers also follow this trend and display negative correlations between productivity and journal prestige but with discipline-dependent intensity. Our research indicates that academics are averse to simultaneous changes in their productivity and journal-prestige levels over consecutive career years. We also find that career patterns concerning productivity and journal prestige are discipline-specific, having in common a raise of productivity with career age for most disciplines and a higher chance of outperforming in journal impact during early career stages.
We investigated daily COVID-19 cases and deaths in the 337 lower tier local authority regions in England and Wales to better understand how the disease propagated over a 15-month period. Population density scaling models revealed residual variance an d skewness to be sensitive indicators of the dynamics of propagation. Lockdowns and schools reopening triggered increased variance indicative of outbreaks with local impact and country scale heterogeneity. University reopening and December holidays triggered reduced variance indicative of country scale homogenisation which reached a minimum in mid-January 2021. Homogeneous propagation was associated with better correspondence with normally distributed residuals while heterogeneous propagation was more consistent with skewed models. Skewness varied from strongly negative to strongly positive revealing an unappreciated feature of community propagation. Hot spots and super-spreading events are well understood descriptors of regional disease dynamics that would be expected to be associated with positively skewed distributions. Positively skewed behaviour was observed; however, negative skewness indicative of cold-spots and super-isolation dominated for approximately 8 months during the period of study. In contrast, death metrics showed near constant behaviour in scaling, variance, and skewness metrics over the full period with rural regions preferentially affected, an observation consistent with regional age demographics in England and Wales. Regional positions relative to density scaling laws were remarkably persistent after the first 5-9 days of the available data set. The determinants of this persistent behaviour probably precede the pandemic and remain unchanged.
Since Bandt and Pompes seminal work, permutation entropy has been used in several applications and is now an essential tool for time series analysis. Beyond becoming a popular and successful technique, permutation entropy inspired a framework for map ping time series into symbolic sequences that triggered the development of many other tools, including an approach for creating networks from time series known as ordinal networks. Despite the increasing popularity, the computational development of these methods is fragmented, and there were still no efforts focusing on creating a unified software package. Here we present ordpy, a simple and open-source Python module that implements permutation entropy and several of the principal methods related to Bandt and Pompes framework to analyze time series and two-dimensional data. In particular, ordpy implements permutation entropy, Tsallis and Renyi permutation entropies, complexity-entropy plane, complexity-entropy curves, missing ordinal patterns, ordinal networks, and missing ordinal transitions for one-dimensional (time series) and two-dimensional (images) data as well as their multiscale generalizations. We review some theoretical aspects of these tools and illustrate the use of ordpy by replicating several literature results.
Urban scaling and Zipfs law are two fundamental paradigms for the science of cities. These laws have mostly been investigated independently and are often perceived as disassociated matters. Here we present a large scale investigation about the connec tion between these two laws using population and GDP data from almost five thousand consistently-defined cities in 96 countries. We empirically demonstrate that both laws are tied to each other and derive an expression relating the urban scaling and Zipf exponents. This expression captures the average tendency of the empirical relation between both exponents, and simulations yield very similar results to the real data after accounting for random variations. We find that while the vast majority of countries exhibit increasing returns to scale of urban GDP, this effect is less pronounced in countries with fewer small cities and more metropolises (small Zipf exponent) than in countries with a more uneven number of small and large cities (large Zipf exponent). Our research puts forward the idea that urban scaling does not solely emerge from intra-city processes, as population distribution and scaling of urban GDP are correlated to each other.
An increasing abstraction has marked some recent investigations in network science. Examples include the development of algorithms that map time series data into networks whose vertices and edges can have different interpretations, beyond the classic al idea of parts and interactions of a complex system. These approaches have proven useful for dealing with the growing complexity and volume of diverse data sets. However, the use of such algorithms is mostly limited to one-dimension data, and there has been little effort towards extending these methods to higher-dimensional data such as images. Here we propose a generalization for the ordinal network algorithm for mapping images into networks. We investigate the emergence of connectivity constraints inherited from the symbolization process used for defining the network nodes and links, which in turn allows us to derive the exact structure of ordinal networks obtained from random images. We illustrate the use of this new algorithm in a series of applications involving randomization of periodic ornaments, images generated by two-dimensional fractional Brownian motion and the Ising model, and a data set of natural textures. These examples show that measures obtained from ordinal networks (such as average shortest path and global node entropy) extract important image properties related to roughness and symmetry, are robust against noise, and can achieve higher accuracy than traditional texture descriptors extracted from gray-level co-occurrence matrices in simple image classification tasks.
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economi c activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.
Approaches for mapping time series to networks have become essential tools for dealing with the increasing challenges of characterizing data from complex systems. Among the different algorithms, the recently proposed ordinal networks stand out due to its simplicity and computational efficiency. However, applications of ordinal networks have been mainly focused on time series arising from nonlinear dynamical systems, while basic properties of ordinal networks related to simple stochastic processes remain poorly understood. Here, we investigate several properties of ordinal networks emerging from random time series, noisy periodic signals, fractional Brownian motion, and earthquake magnitude series. For ordinal networks of random series, we present an approach for building the exact form of the adjacency matrix, which in turn is useful for detecting non-random behavior in time series and the existence of missing transitions among ordinal patterns. We find that the average value of a local entropy, estimated from transition probabilities among neighboring nodes of ordinal networks, is more robust against noise addition than the standard permutation entropy. We show that ordinal networks can be used for estimating the Hurst exponent of time series with accuracy comparable with state-of-the-art methods. Finally, we argue that ordinal networks can detect sudden changes in Earth seismic activity caused by large earthquakes.
The efficient market hypothesis has far-reaching implications for financial trading and market stability. Whether or not cryptocurrencies are informationally efficient has therefore been the subject of intense recent investigation. Here, we use permu tation entropy and statistical complexity over sliding time-windows of price log returns to quantify the dynamic efficiency of more than four hundred cryptocurrencies. We consider that a cryptocurrency is efficient within a time-window when these two complexity measures are statistically indistinguishable from their values obtained on randomly shuffled data. We find that 37% of the cryptocurrencies in our study stay efficient over 80% of the time, whereas 20% are informationally efficient in less than 20% of the time. Our results also show that the efficiency is not correlated with the market capitalization of the cryptocurrencies. A dynamic analysis of informational efficiency over time reveals clustering patterns in which different cryptocurrencies with similar temporal patterns form four clusters, and moreover, younger currencies in each group appear poised to follow the trend of their elders. The cryptocurrency market thus already shows notable adherence to the efficient market hypothesis, although data also reveals that the coming-of-age of digital currencies is in this regard still very much underway.
Art is the ultimate expression of human creativity that is deeply influenced by the philosophy and culture of the corresponding historical epoch. The quantitative analysis of art is therefore essential for better understanding human cultural evolutio n. Here we present a large-scale quantitative analysis of almost 140 thousand paintings, spanning nearly a millennium of art history. Based on the local spatial patterns in the images of these paintings, we estimate the permutation entropy and the statistical complexity of each painting. These measures map the degree of visual order of artworks into a scale of order-disorder and simplicity-complexity that locally reflects qualitative categories proposed by art historians. The dynamical behavior of these measures reveals a clear temporal evolution of art, marked by transitions that agree with the main historical periods of art. Our research shows that different artistic styles have a distinct average degree of entropy and complexity, thus allowing a hierarchical organization and clustering of styles according to these metrics. We have further verified that the identified groups correspond well with the textual content used to qualitatively describe the styles, and that the employed complexity-entropy measures can be used for an effective classification of artworks.
Unveiling the relationships between crime and socioeconomic factors is crucial for modeling and preventing these illegal activities. Recently, a significant advance has been made in understanding the influence of urban metrics on the levels of crime in different urban systems. In this chapter, we show how the dynamics of crime growth rate and the number of crime in cities are related to cities size. We also discuss the role of urban metrics in crime modeling within the framework of the urban scaling hypothesis, where a data-driven approach is proposed for modeling crime. This model provides several insights into the mechanism ruling the dynamics of crime and can assist policymakers in making better decisions on resource allocation and help crime prevention.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا