ترغب بنشر مسار تعليمي؟ اضغط هنا

We report experimental evidence of strong orientational coupling between the crystal lattice and the vortex lattice in a weakly pinned Co-doped NbSe2 single crystal through direct imaging using low temperature scanning tunneling microscopy/spectrosco py. At low fields, when the magnetic field is applied along the six-fold symmetric c-axis of the NbSe2 crystal, the equilibrium configuration of the vortex lattice is preferentially aligned along the basis vectors of the crystal lattice. The orientational coupling between the vortex lattice and crystal lattice becomes more pronounced as the magnetic field is increased. We show that this coupling enhances the stability of the orientational order of the vortex lattice, which persists even in the disordered state at high fields where dislocations and disclinations have destroyed the topological order.
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0. 0075NbSe2 single crystal, we show that at low temperatures, the vortex lattice in a 3-dimensional superconductor disorders in two steps across the peak effect. At the onset of the peak effect, the equilibrium Bragg glass transforms into an orientational glass through the proliferation of dislocations. At a higher field, the dislocations dissociate into isolated disclination giving rise to an amorphous vortex glass. We also show the existence of a variety of additional non-equilibrium metastable states, which can be accessed through different thermomagnetic cycling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا