ﻻ يوجد ملخص باللغة العربية
We report experimental evidence of strong orientational coupling between the crystal lattice and the vortex lattice in a weakly pinned Co-doped NbSe2 single crystal through direct imaging using low temperature scanning tunneling microscopy/spectroscopy. At low fields, when the magnetic field is applied along the six-fold symmetric c-axis of the NbSe2 crystal, the equilibrium configuration of the vortex lattice is preferentially aligned along the basis vectors of the crystal lattice. The orientational coupling between the vortex lattice and crystal lattice becomes more pronounced as the magnetic field is increased. We show that this coupling enhances the stability of the orientational order of the vortex lattice, which persists even in the disordered state at high fields where dislocations and disclinations have destroyed the topological order.
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.
A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe$_2$As$_2$ reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at $T_texttt{O}$ = $T_texttt
The vortex-lattice melting transitions in two typical iron-based high-Tc superconductor $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ (122-type) and$Nd(O_{1-x}F_{x})FeAs$ (1111-type) for magnetic fields both parallel and perpendicular to the anisotropy axis are stu
Quantum fluids refer to a class of systems that remain in fluid state down to absolute zero temperature. In this letter, using a combination of magnetotransport and scanning tunneling spectroscopy down to 300 mK, we show that vortices in a very weakl
Neutron diffraction measurements of a high quality single crystal of CaFe2As2 are reported. A sharp transition was observed between the high temperature tetragonal and low temperature orthorhombic structures at TS = 172.5K (on cooling) and 173.5K (on