ترغب بنشر مسار تعليمي؟ اضغط هنا

123 - Lei Shen , Jinchao Zhang , Jiao Ou 2021
Researches on dialogue empathy aim to endow an agent with the capacity of accurate understanding and proper responding for emotions. Existing models for empathetic dialogue generation focus on the emotion flow in one direction, that is, from the cont ext to response. We argue that conducting an empathetic conversation is a bidirectional process, where empathy occurs when the emotions of two interlocutors could converge on the same point, i.e., reaching an emotion consensus. Besides, we also find that the empathetic dialogue corpus is extremely limited, which further restricts the model performance. To address the above issues, we propose a dual-generative model, Dual-Emp, to simultaneously construct the emotion consensus and utilize some external unpaired data. Specifically, our model integrates a forward dialogue model, a backward dialogue model, and a discrete latent variable representing the emotion consensus into a unified architecture. Then, to alleviate the constraint of paired data, we extract unpaired emotional data from open-domain conversations and employ Dual-Emp to produce pseudo paired empathetic samples, which is more efficient and low-cost than the human annotation. Automatic and human evaluations demonstrate that our method outperforms competitive baselines in producing coherent and empathetic responses.
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation capacity of GCN to tackle complex spatio-temporal pose variations in videos. To alleviate this problem, we propose a novel Dynamical Graph Network (DG-Net), which can dynamically identify human-joint affinity, and estimate 3D pose by adaptively learning spatial/temporal joint relations from videos. Different from traditional graph convolution, we introduce Dynamical Spatial/Temporal Graph convolution (DSG/DTG) to discover spatial/temporal human-joint affinity for each video exemplar, depending on spatial distance/temporal movement similarity between human joints in this video. Hence, they can effectively understand which joints are spatially closer and/or have consistent motion, for reducing depth ambiguity and/or motion uncertainty when lifting 2D pose to 3D pose. We conduct extensive experiments on three popular benchmarks, e.g., Human3.6M, HumanEva-I, and MPI-INF-3DHP, where DG-Net outperforms a number of recent SOTA approaches with fewer input frames and model size.
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is desig ned for the left-to-right decoding process of the non-parallel autoregressive (AR) transformer, which is inappropriate for the parallel NAR transformer since it ignores the right-to-left contexts. Some models are proposed to utilize right-to-left contexts with an extra decoder, but these methods increase the model complexity. To tackle the above problems, we propose a new non-autoregressive transformer with a unified bidirectional decoder (NAT-UBD), which can simultaneously utilize left-to-right and right-to-left contexts. However, direct use of bidirectional contexts will cause information leakage, which means the decoder output can be affected by the character information from the input of the same position. To avoid information leakage, we propose a novel attention mask and modify vanilla queries, keys, and values matrices for NAT-UBD. Experimental results verify that NAT-UBD can achieve character error rates (CERs) of 5.0%/5.5% on the Aishell1 dev/test sets, outperforming all previous NAR transformer models. Moreover, NAT-UBD can run 49.8x faster than the AR transformer baseline when decoding in a single step.
Retrieval-based chatbot selects the appropriate response from candidates according to the context, which heavily depends on a response selection module. A response selection module is generally a scoring model to evaluate candidates and is usually tr ained on the annotated positive response and sampled negative responses. Sampling negative responses lead to two risks: a). The sampled negative instances, especially that from random sampling methods, are mostly irrelevant to the dialogue context and too easy to be fitted at the training stage while causing a weak model in the real scenario. b). The so-called negative instances may be positive, which is known as the fake negative problem. To address the above issue, we employ pre-trained language models, such as the DialoGPT to construct more challenging negative instances to enhance the model robustness. Specifically, we provide garbled context to the pre-trained model to generate responses and filter the fake negative ones. In this way, our negative instances are fluent, context-related, and more challenging for the model to learn, while can not be positive. Extensive experiments show that our method brings significant and stable improvements on the dialogue response selection capacity.
380 - Yao Qiu , Jinchao Zhang , Jie Zhou 2021
Recent work has proposed several efficient approaches for generating gradient-based adversarial perturbations on embeddings and proved that the models performance and robustness can be improved when they are trained with these contaminated embeddings . While they paid little attention to how to help the model to learn these adversarial samples more efficiently. In this work, we focus on enhancing the models ability to defend gradient-based adversarial attack during the models training process and propose two novel adversarial training approaches: (1) CARL narrows the original sample and its adversarial sample in the representation space while enlarging their distance from different labeled samples. (2) RAR forces the model to reconstruct the original sample from its adversarial representation. Experiments show that the proposed two approaches outperform strong baselines on various text classification datasets. Analysis experiments find that when using our approaches, the semantic representation of the input sentence wont be significantly affected by adversarial perturbations, and the models performance drops less under adversarial attack. That is to say, our approaches can effectively improve the robustness of the model. Besides, RAR can also be used to generate text-form adversarial samples.
266 - Yao Qiu , Jinchao Zhang , Jie Zhou 2021
Loading models pre-trained on the large-scale corpus in the general domain and fine-tuning them on specific downstream tasks is gradually becoming a paradigm in Natural Language Processing. Previous investigations prove that introducing a further pre -training phase between pre-training and fine-tuning phases to adapt the model on the domain-specific unlabeled data can bring positive effects. However, most of these further pre-training works just keep running the conventional pre-training task, e.g., masked language model, which can be regarded as the domain adaptation to bridge the data distribution gap. After observing diverse downstream tasks, we suggest that different tasks may also need a further pre-training phase with appropriate training tasks to bridge the task formulation gap. To investigate this, we carry out a study for improving multiple task-oriented dialogue downstream tasks through designing various tasks at the further pre-training phase. The experiment shows that different downstream tasks prefer different further pre-training tasks, which have intrinsic correlation and most further pre-training tasks significantly improve certain target tasks rather than all. Our investigation indicates that it is of great importance and effectiveness to design appropriate further pre-training tasks modeling specific information that benefit downstream tasks. Besides, we present multiple constructive empirical conclusions for enhancing task-oriented dialogues.
Automatically composing pop music with a satisfactory structure is an attractive but challenging topic. Although the musical structure is easy to be perceived by human, it is difficult to be described clearly and defined accurately. And it is still f ar from being solved that how we should model the structure in pop music generation. In this paper, we propose to leverage harmony-aware learning for structure-enhanced pop music generation. On the one hand, one of the participants of harmony, chord, represents the harmonic set of multiple notes, which is integrated closely with the spatial structure of music, texture. On the other hand, the other participant of harmony, chord progression, usually accompanies with the development of the music, which promotes the temporal structure of music, form. Besides, when chords evolve into chord progression, the texture and the form can be bridged by the harmony naturally, which contributes to the joint learning of the two structures. Furthermore, we propose the Harmony-Aware Hierarchical Music Transformer (HAT), which can exploit the structure adaptively from the music, and interact on the music tokens at multiple levels to enhance the signals of the structure in various musical elements. Results of subjective and objective evaluations demonstrate that HAT significantly improves the quality of generated music, especially in the structureness.
We investigate the tensor network representations of fermionic crystalline symmetry-protected topological (SPT) phases on two-dimensional lattices. As a mapping from virtual indices to physical indices, projected entangled-pair state (PEPS) serves as a concrete way to construct the wavefunctions of 2D crystalline fermionic SPT (fSPT) phases protected by 17 wallpaper group symmetries, for both spinless and spin-1/2 fermions. Based on PEPS, the full classification of 2D crystalline fSPT phases with wallpaper groups can be obtained. Tensor network states provide a natural framework for studying 2D crystalline fSPT phases.
136 - Chunzhi Gu , Yan Zhao , Chao Zhang 2021
Human motion prediction, which plays a key role in computer vision, generally requires a past motion sequence as input. However, in real applications, a complete and correct past motion sequence can be too expensive to achieve. In this paper, we prop ose a novel approach to predict future human motions from a much weaker condition, i.e., a single image, with mixture density networks (MDN) modeling. Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses, which well compensates for the strong stochastic ambiguity aggregated by the single input and human motion uncertainty. In designing the loss function, we further introduce an energy-based prior over learnable parameters of MDN to maintain motion coherence, as well as improve the prediction accuracy. Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition. Extensive experiments on two standard benchmark datasets demonstrate the effectiveness of our method, in terms of prediction diversity and accuracy.
Human conversations consist of reasonable and natural topic flows, which are observed as the shifts of the mentioned concepts across utterances. Previous chatbots that incorporate the external commonsense knowledge graph prove that modeling the conce pt shifts can effectively alleviate the dull and uninformative response dilemma. However, there still exists a gap between the concept relations in the natural conversation and those in the external commonsense knowledge graph, which is an issue to solve. Specifically, the concept relations in the external commonsense knowledge graph are not intuitively built from the conversational scenario but the world knowledge, which makes them insufficient for the chatbot construction. To bridge the above gap, we propose the method to supply more concept relations extracted from the conversational corpora and reconstruct an enhanced concept graph for the chatbot construction. In addition, we present a novel, powerful, and fast graph encoding architecture named the Edge-Transformer to replace the traditional GNN architecture. Experimental results on the Reddit conversation dataset indicate our proposed method significantly outperforms strong baseline systems and achieves new SOTA results. Further analysis individually proves the effectiveness of the enhanced concept graph and the Edge-Transformer architecture.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا