ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the classical Cramer-Lundberg risk model with claim sizes that are mixtures of phase-type and subexponential variables. Exploiting a specific geometric compound representation, we propose control variate techniques to efficiently simulate the ruin probability in this situation. The resulting estimators perform well for both small and large initial capital. We quantify the variance reduction as well as the efficiency gain of our method over another fast standard technique based on the classical Pollaczek-Khinchine formula. We provide a numerical example to illustrate the performance, and show that for more time-consuming conditional Monte Carlo techniques, the new series representation also does not compare unfavorably to the one based on the Pollaczek- Khinchine formula.
We investigate the probability that an insurance portfolio gets ruined within a finite time period under the assumption that the r largest claims are (partly) reinsured. We show that for regularly varying claim sizes the probability of ruin after rei nsurance is also regularly varying in terms of the initial capital, and derive an explicit asymptotic expression for the latter. We establish this result by leveraging recent developments on sample-path large deviations for heavy tails. Our results allow, on the asymptotic level, for an explicit comparison between two well-known large-claim reinsurance contracts, namely LCR and ECOMOR. We finally assess the accuracy of the resulting approximations using state-of-the-art rare event simulation techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا