ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new additive results for the group inverse in a Banach algebra under certain perturbations. The upper bound of $|(a+b)^{#}-a^d|$ is thereby given. These extend the main results in [X. Liu, Y. Qin and H. Wei, Perturbation bound of the group inverse and the generalized Schur complement in Banach algebra, Abstr. Appl. Anal., 2012, 22 pages. DOI:10.1155/2012/629178].
Regarding the question of how idempotent elements affect reversible property of rings, we study a version of reversibility depending on idempotents. In this perspective, we introduce {it right} (resp., {it left}) {it $e$-reversible rings}. We show th at this concept is not left-right symmetric. Basic properties of right $e$-reversibility in a ring are provided. Among others it is proved that if $R$ is a semiprime ring, then $R$ is right $e$-reversible if and only if it is right $e$-reduced if and only if it is $e$-symmetric if and only if it is right $e$-semicommutative. Also, for a right $e$-reversible ring $R$, $R$ is a prime ring if and only if it is a domain. It is shown that the class of right $e$-reversible rings is strictly between that of $e$-symmetric rings and right $e$-semicommutative rings.
An ideal $I$ of a ring $R$ is called left N-reflexive if for any $ain$ nil$(R)$, $bin R$, being $aRb subseteq I$ implies $bRa subseteq I$ where nil$(R)$ is the set of all nilpotent elements of $R$. The ring $R$ is called left N-reflexive if the zero ideal is left N-reflexive. We study the properties of left N-reflexive rings and related concepts. Since reflexive rings and reduced rings are left N-reflexive, we investigate the sufficient conditions for left N-reflexive rings to be reflexive and reduced. We first consider basic extensions of left N-reflexive rings. For an ideal-symmetric ideal $I$ of a ring $R$, $R/I$ is left N-reflexive. If an ideal $I$ of a ring $R$ is reduced as a ring without identity and $R/I$ is left N-reflexive, then $R$ is left N-reflexive. If $R$ is a quasi-Armendariz ring and the coefficients of any nilpotent polynomial in $R[x]$ are nilpotent in $R$, it is proved that $R$ is left N-reflexive if and only if $R[x]$ is left N-reflexive. We show that the concept of N-reflexivity is weaker than that of reflexivity and stronger than that of left N-right idempotent reflexivity and right idempotent reflexivity which are introduced in Section 5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا