ترغب بنشر مسار تعليمي؟ اضغط هنا

Reflexivity of Rings via Nilpotent Elements

91   0   0.0 ( 0 )
 نشر من قبل Burcu Ungor
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An ideal $I$ of a ring $R$ is called left N-reflexive if for any $ain$ nil$(R)$, $bin R$, being $aRb subseteq I$ implies $bRa subseteq I$ where nil$(R)$ is the set of all nilpotent elements of $R$. The ring $R$ is called left N-reflexive if the zero ideal is left N-reflexive. We study the properties of left N-reflexive rings and related concepts. Since reflexive rings and reduced rings are left N-reflexive, we investigate the sufficient conditions for left N-reflexive rings to be reflexive and reduced. We first consider basic extensions of left N-reflexive rings. For an ideal-symmetric ideal $I$ of a ring $R$, $R/I$ is left N-reflexive. If an ideal $I$ of a ring $R$ is reduced as a ring without identity and $R/I$ is left N-reflexive, then $R$ is left N-reflexive. If $R$ is a quasi-Armendariz ring and the coefficients of any nilpotent polynomial in $R[x]$ are nilpotent in $R$, it is proved that $R$ is left N-reflexive if and only if $R[x]$ is left N-reflexive. We show that the concept of N-reflexivity is weaker than that of reflexivity and stronger than that of left N-right idempotent reflexivity and right idempotent reflexivity which are introduced in Section 5.

قيم البحث

اقرأ أيضاً

In this paper, we investigate *-DMP elements in $*$-semigroups and $*$-rings. The notion of *-DMP element was introduced by Patr{i}cio in 2004. An element $a$ is *-DMP if there exists a positive integer $m$ such that $a^{m}$ is EP. We first character ize *-DMP elements in terms of the {1,3}-inverse, Drazin inverse and pseudo core inverse, respectively. Then, we give the pseudo core decomposition utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for matrices to an arbitrary $*$-ring; and this decomposition turns to be a useful tool to characterize *-DMP elements. Further, we extend Wangs core-EP order from matrices to $*$-rings and use it to investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements $a,~b$ in $*$-rings to have $aa^{scriptsizetextcircled{tiny D}}=bb^{scriptsizetextcircled{tiny D}}$, which contribute to investigate *-DMP elements.
Regarding the question of how idempotent elements affect reversible property of rings, we study a version of reversibility depending on idempotents. In this perspective, we introduce {it right} (resp., {it left}) {it $e$-reversible rings}. We show th at this concept is not left-right symmetric. Basic properties of right $e$-reversibility in a ring are provided. Among others it is proved that if $R$ is a semiprime ring, then $R$ is right $e$-reversible if and only if it is right $e$-reduced if and only if it is $e$-symmetric if and only if it is right $e$-semicommutative. Also, for a right $e$-reversible ring $R$, $R$ is a prime ring if and only if it is a domain. It is shown that the class of right $e$-reversible rings is strictly between that of $e$-symmetric rings and right $e$-semicommutative rings.
W. A. Moens proved that a Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. In this paper we show that with the definition of Leibniz-derivation from W. A. Moens the similar result for non Lie Leibniz algebras is not true. Namely, we give an example of non nilpotent Leibniz algebra which admits an invertible Leibniz-derivation. In order to extend the results of paper W. A. Moens for Leibniz algebras we introduce a definition of Leibniz-derivation of Leibniz algebras which agrees with Leibniz-derivation of Lie algebras case. Further we prove that a Leibniz algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. Moreover, the result that solvable radical of a Lie algebra is invariant with respect to a Leibniz-derivation was extended to the case of Leibniz algebras.
Recently, by A. Elduque and A. Labra a new technique and a type of an evolution algebra are introduced. Several nilpotent evolution algebras defined in terms of bilinear forms and symmetric endomorphisms are constructed. The technique then used for t he classification of the nilpotent evolution algebras up to dimension five. In this paper we develop this technique for high dimensional evolution algebras. We construct nilpotent evolution algebras of any type. Moreover, we show that, except the cases considered by Elduque and Labra, this construction of nilpotent evolution algebras does not give all possible nilpotent evolution algebras.
We give the complete algebraic classification of all complex 4-dimensional nilpotent algebras. The final list has 234 (parametric families of) isomorphism classes of algebras, 66 of which are new in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا