ترغب بنشر مسار تعليمي؟ اضغط هنا

91 - Han-Xin Yang , Ming Tang , 2015
In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on {em correlated} networks has not been addressed. Interestingly, we find that the epidemic t hreshold, a fundamental quantity underlying the spreading dynamics, exhibits a non-monotonic behavior in that it can be minimized for some critical value of the assortativity coefficient, a parameter characterizing the network correlation. To understand this phenomenon, we use the degree-based mean-field theory to calculate the traffic-driven epidemic threshold for correlated networks. The theory predicts that the threshold is inversely proportional to the packet-generation rate and the largest eigenvalue of the betweenness matrix. We obtain consistency between theory and numerics. Our results may provide insights into the important problem of controlling/harnessing real-world epidemic spreading dynamics driven by traffic flows.
In a recent work [Shao $et$ $al$ 2009 Phys. Rev. Lett. textbf{108} 018701], a nonconsensus opinion (NCO) model was proposed, where two opinions can stably coexist by forming clusters of agents holding the same opinion. The NCO model on lattices and s everal complex networks displays a phase transition behavior, which is characterized by a large spanning cluster of nodes holding the same opinion appears when the initial fraction of nodes holding this opinion is above a certain critical value. In the NCO model, each agent will convert to its opposite opinion if there are more than half of agents holding the opposite opinion in its neighborhood. In this paper, we generalize the NCO model by assuming that each agent will change its opinion if the fraction of agents holding the opposite opinion in its neighborhood exceeds a threshold $T$ ($Tgeq 0.5$). We call this generalized model as the NCOT model. We apply the NCOT model on different network structures and study the formation of opinion clusters. We find that the NCOT model on lattices displays a continuous phase transition. For random graphs and scale-free networks, the NCOT model shows a discontinuous phase transition when the threshold is small and the average degree of the network is large, while in other cases the NCOT model displays a continuous phase transition.
77 - Han-Xin Yang , Tao Zhou , 2015
We propose a dynamic model for a system consisting of self-propelled agents in which the influence of an agent on another agent is weighted by geographical distance. A parameter $alpha$ is introduced to adjust the influence: the smaller value of $alp ha$ means that the closer neighbors have stronger influence on the moving direction. We find that there exists an optimal value of $alpha$, leading to the highest degree of direction consensus. The value of optimal $alpha$ increases as the system size increases, while it decreases as the absolute velocity, the sensing radius and the noise amplitude increase.
The interplay between traffic dynamics and epidemic spreading on complex networks has received increasing attention in recent years. However, the control of traffic-driven epidemic spreading remains to be a challenging problem. In this Brief Report, we propose a method to suppress traffic-driven epidemic outbreak by properly removing some edges in a network. We find that the epidemic threshold can be enhanced by the targeted cutting of links among large-degree nodes or edges with the largest algorithmic betweeness. In contrast, the epidemic threshold will be reduced by the random edge removal. These findings are robust with respect to traffic-flow conditions, network structures and routing strategies. Moreover, we find that the shutdown of targeted edges can effectively release traffic load passing through large-degree nodes, rendering a relatively low probability of infection to these nodes.
In this paper, we study the role of degree mixing in the naming game. It is found that consensus can be accelerated on disassortative networks. We provide a qualitative explanation of this phenomenon based on clusters statistics. Compared with assort ative mixing, disassortative mixing can promote the merging of different clusters, thus resulting in a shorter convergence time. Other quantities, including the evolutions of the success rate, the number of total words and the number of different words, are also studied.
349 - Han-Xin Yang , Zhi-Xi Wu 2015
Despite extensive work on the interplay between traffic dynamics and epidemic spreading, the control of epidemic spreading by routing strategies has not received adequate attention. In this paper, we study the impact of efficient routing protocol on epidemic spreading. In the case of infinite node-delivery capacity, where the traffic is free of congestion, we find that that there exists optimal values of routing parameter, leading to the maximal epidemic threshold. This means that epidemic spreading can be effectively controlled by fine tuning the routing scheme. Moreover, we find that an increase in the average network connectivity and the emergence of traffic congestion can suppress the epidemic outbreak.
The paradox of cooperation among selfish individuals still puzzles scientific communities. Although a large amount of evidence has demonstrated that cooperator clusters in spatial games are effective to protect cooperators against the invasion of def ectors, we continue to lack the condition for the formation of a giant cooperator cluster that assures the prevalence of cooperation in a system. Here, we study the dynamical organization of cooperator clusters in spatial prisoners dilemma game to offer the condition for the dominance of cooperation, finding that a phase transition characterized by the emergence of a large spanning cooperator cluster occurs when the initial fraction of cooperators exceeds a certain threshold. Interestingly, the phase transition belongs to different universality classes of percolation determined by the temptation to defect $b$. Specifically, on square lattices, $1<b<4/3$ leads to a phase transition pertaining to the class of regular site percolation, whereas $3/2<b<2$ gives rise to a phase transition subject to invasion percolation with trapping. Our findings offer deeper understanding of the cooperative behaviors in nature and society.
63 - Zhi-Xi Wu , Han-Xin Yang 2014
We study the evolution of cooperation in the evolutionary spatial prisoners dilemma game (PDG) and snowdrift game (SG), within which a fraction $alpha$ of the payoffs of each player gained from direct game interactions is shared equally by the immedi ate neighbors. The magnitude of the parameter $alpha$ therefore characterizes the degree of the relatedness among the neighboring players. By means of extensive Monte Carlo simulations as well as an extended mean-field approximation method, we trace the frequency of cooperation in the stationary state. We find that plugging into relatedness can significantly promote the evolution of cooperation in the context of both studied games. Unexpectedly, cooperation can be more readily established in the spatial PDG than that in the spatial SG, given that the degree of relatedness and the cost-to-benefit ratio of mutual cooperation are properly formulated. The relevance of our model with the stakeholder theory is also briefly discussed.
In this paper, we design a greedy routing on networks of mobile agents. In the greedy routing algorithm, every time step a packet in agent $i$ is delivered to the agent $j$ whose distance from the destination is shortest among searched neighbors of a gent $i$. Based on the greedy routing, we study the traffic dynamics and traffic-driven epidemic spreading on networks of mobile agents. We find that the transportation capacity of networks and the epidemic threshold increase as the communication radius increases. For moderate moving speed, the transportation capacity of networks is the highest and the epidemic threshold maintains a large value. These results can help controlling the traffic congestion and epidemic spreading on mobile networks.
We propose a limited packet-delivering capacity model for traffic dynamics in scale-free networks. In this model, the total nodes packet-delivering capacity is fixed, and the allocation of packet-delivering capacity on node $i$ is proportional to $k_ {i}^{phi}$, where $k_{i}$ is the degree of node $i$ and $phi$ is a adjustable parameter. We have applied this model on the shortest path routing strategy as well as the local routing strategy, and found that there exists an optimal value of parameter $phi$ leading to the maximal network capacity under both routing strategies. We provide some explanations for the emergence of optimal $phi$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا