ترغب بنشر مسار تعليمي؟ اضغط هنا

While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. T his model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grovers algorithm, that our algorithm is exactly optimal.
Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity $B(f)$. We investigate its relationship with the usual quantum query complexity $Q(f)$, and sh ow that $B(f)=Theta(Q(f)^2)$. This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on $Q(f)=Theta(sqrt{B(f)})$. We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with $O(n^{1.5})$ quantum query complexity, improving the best known algorithm of $O(n^{1.5}sqrt{log n})$ [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an $O(n^{1.75})$ algorithm, improving the best known trivial $O(n^2)$ upper bound.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا