ﻻ يوجد ملخص باللغة العربية
Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity $B(f)$. We investigate its relationship with the usual quantum query complexity $Q(f)$, and show that $B(f)=Theta(Q(f)^2)$. This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on $Q(f)=Theta(sqrt{B(f)})$. We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with $O(n^{1.5})$ quantum query complexity, improving the best known algorithm of $O(n^{1.5}sqrt{log n})$ [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an $O(n^{1.75})$ algorithm, improving the best known trivial $O(n^2)$ upper bound.
Shors and Grovers famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and spec
We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query complexity of decision problem
We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificate
We present three new quantum algorithms in the quantum query model for textsc{graph-collision} problem: begin{itemize} item an algorithm based on tree decomposition that uses $Oleft(sqrt{n}t^{sfrac{1}{6}}right)$ queries where $t$ is the treewidth of
We study quantum algorithms that learn properties of a matrix using queries that return its action on an input vector. We show that for various problems, including computing the trace, determinant, or rank of a matrix or solving a linear system that