ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - Han Zhu , Yong P. Chen , P. Jiang 2010
We report the observation of a resonance in the microwave spectra of the real diagonal conductivities of a two-dimensional electron system within a range of ~ +- .0.015 $ from filling factor $ u=1/3$. The resonance is remarkably similar to resonances previously observed near integer $ u$, and is interpreted as the collective pinning mode of a disorder-pinned Wigner solid phase of $e/3$-charged carriers .
Microwave pinning-mode resonances found around integer quantum Hall effects, are a signature of crystallized quasiparticles or holes. Application of in-plane magnetic field to these crystals, increasing the Zeeman energy, has negligible effect on the resonances just below Landau level filling $ u=2$, but increases the pinning frequencies near $ u=1$, particularly for smaller quasiparticle/hole densities. The charge dynamics near $ u=1$, characteristic of a crystal order, are affected by spin, in a manner consistent with a Skyrme crystal.
We study the anisotropic pinning-mode resonances in the rf conductivity spectra of the stripe phase of 2D electron systems (2DES) around Landau level filling 9/2, in the presence of an in-plane magnetic field, B_ip. The polarization along which the r esonance is observed switches as B_ip is applied, consistent with the reorientation of the stripes. The resonance frequency, a measure of the pinning interaction between the 2DES and disorder, increases with B_ip. The magnitude of this increase indicates that disorder interaction is playing an important role in determining the stripe orientation.
We study the radio-frequency diagonal conductivities of the anisotropic stripe phases of higher Landau levels near half integer fillings. In the hard direction, in which larger dc resistivity occurs, the spectrum exhibits a striking resonance, while in the orthogonal, easy direction, no resonance is discernable. The resonance is interpreted as a pinning mode of the stripe phase.
373 - Shuai Dong , Han Zhu , J.-M. Liu 2007
We propose a dielectrophoresis model for phase-separated manganites. Without increase of the fraction of metallic phase, an insulator-metal transition occurs when a uniform electric field applied across the system exceeds a threshold value. Driven by the dielectrophoretic force, the metallic clusters reconfigure themselves into stripes along the direction of electric field, leading to the filamentous percolation. This process, which is time-dependent, irreversible and anisotropic, is a probable origin of the colossal electroresistance in manganites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا