ترغب بنشر مسار تعليمي؟ اضغط هنا

Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars (star-hoppers), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible. Such capture could populate the habitable zone around white dwarfs.
The supernova SN 2005cz has recently attracted some attention, due to the fact that it was spectroscopically similar to type Ib supernovae (SNe), a class that is presumed to result from core-collapse of massive stars, yet it occurred in an elliptical galaxy, where one expects very few massive stars to exist. Two explanations for this remarkable event were put forward. Perets et al. (2010) associate SN 2005cz with the class of Ca-rich, faint SNe Ib, which likely result from old double-white-dwarf systems with a He-rich secondary. On the other hand, Kawabata et al. (2010) suggest that SN 2005cz is indeed a core-collapse event (in a binary system), albeit of a star at the lower end of the mass range, 10-12 M_Sun. The existence of this star in its elliptical host is explained as resulting from low-level star formation (SF) activity in that galaxy. Here we present extensive observations of the location of SN 2005cz, sensitive to a variety of SF tracers, including optical spectroscopy, H_alpha emission, UV emission and HST photometry. We show that NGC 4589, the host galaxy of SN 2005cz, does not show any signatures of a young stellar population or recent SF activity either close to or far from the location of SN 2005cz.
Recent observations of the Galactic center revealed a nuclear disk of young OB stars near the massive black hole (MBH), in addition to many similar outlying stars with higher eccentricities and/or high inclinations relative to the disk (some of them possibly belonging to a second disk). In addition, observations show the existence of young B stars (the S-cluster) in an isotropic distribution in the close vicinity of the MBH ($<0.04$ pc). We use extended N-body simulations to probe the dynamical evolution of these two populations. We show that the stellar disk could have evolved to its currently observed state from a thin disk of stars formed in a gaseous disk, and that the dominant component in its evolution is the interaction with stars in the cusp around the MBH. We also show that the currently observed distribution of the S-stars could be consistent with a capture origin through 3-body binary-MBH interactions. In this scenario the stars are captured at highly eccentric orbits, but scattering by stellar black holes could change their eccentricity distribution to be consistent with current observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا