ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - C. S. liu , H. G. Luo , W. C. Wu 2011
Motivated by a recent experiment of spatial and temperature dependent average exciton energy distribution in coupled quantum wells [S. Yang textit{et al.}, Phys. Rev. B textbf{75}, 033311 (2007)], we investigate the nature of the interactions in indi rect excitons. Based on the uncertainty principle, along with a temperature and energy dependent distribution which includes both population and recombination effects, we show that the interplay between an attractive two-body interaction and a repulsive three-body interaction can lead to a natural and good account for the nonmonotonic temperature dependence of the average exciton energy. Moreover, exciton energy maxima are shown to locate at the brightest regions, in agreement with the recent experiments. Our results provide an alternative way for understanding the underlying physics of the exciton dynamics in coupled quantum wells.
109 - H.-G. Luo , M.-P. Qin , 2010
We have proposed a density-matrix renormalization group (DMRG) scheme to optimize the one-electron basis states of molecules. It improves significantly the accuracy and efficiency of the DMRG in the study of quantum chemistry or other many-fermion sy stem with nonlocal interactions. For a water molecule, we find that the ground state energy obtained by the DMRG with only 61 optimized orbitals already reaches the accuracy of best quantum Monte Carlo calculation with 92 orbitals.
202 - T. Xiang , H. G. Luo , D. H. Lu 2008
Based on the analysis of the measurement data of angle-resolved photoemission spectroscopy (ARPES) and optics, we show that the charge transfer gap is significantly smaller than the optical one and is reduced by doping in electron doped cuprate super conductors. This leads to a strong charge fluctuation between the Zhang-Rice singlet and the upper Hubbard bands. The basic model for describing this system is a hybridized two-band $t$-$J$ model. In the symmetric limit where the corresponding intra- and inter-band hopping integrals are equal to each other, this two-band model is equivalent to the Hubbard model with an antiferromagnetic exchange interaction (i.e. the $t$-$U$-$J$ model). The mean-field result of the $t$-$U$-$J$ model gives a good account for the doping evolution of the Fermi surface and the staggered magnetization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا