ترغب بنشر مسار تعليمي؟ اضغط هنا

We present sharp magnetization jumps and field induced irreversibility in magnetization in multiferroic Y2CoMnO6. Appearance of magnetic relaxation and field sweep rate dependence of magnetization jumps resemble the martensite like scenario and sugge sts the coexistence of E*-type antiferromagnetic and ferromagnetic phases at low temperatures. In Y2CoMnO6, the critical field required for the sharp jump can be increased or decreased depening on the magnitude and direction of the cooling field; this is remarkably different from manganites or other metamagnetic materials where the critical field increases irrespective of the direction of the field cooling. The cooling field dependence on the sharp magnetization jumps has been described by considering exchange pinning mechanism at the interface, like in exchange bias model.
55 - F. L. Zheng , S. Z. Wu , H. C. Wu 2011
Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, w hich snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell (PIC) simulation shows that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of > 10 GeV peak energy and < 2degree divergence can be produced by a 9.8 *10^21 W/cm2 circularly polarized laser pulse.
42 - H.-C. Wu , T. Tajima , D. Habs 2009
With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological ha zards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا