ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero forcing is a combinatorial game played on a graph with a goal of turning all of the vertices of the graph black while having to use as few unforced moves as possible. This leads to a parameter known as the zero forcing number which can be used t o give an upper bound for the maximum nullity of a matrix associated with the graph. We introduce a new variation on the zero forcing game which can be used to give an upper bound for the maximum nullity of a matrix associated with a graph that has $q$ negative eigenvalues. This gives some limits to the number of positive eigenvalues that such a graph can have and so can be used to form lower bounds for the inertia set of a graph.
Adapting a definition of Aaronson and Ambainis [Theory Comput. 1 (2005), 47--79], we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the dir ected edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.
Considered is the multiplicative semigroup of ratios of products of principal minors bounded over all positive definite matrices. A long history of literature identifies various elements of this semigroup, all of which lie in a sub-semigroup generate d by Hadamard-Fischer inequalities. Via cone-theoretic techniques and the patterns of nullity among positive semidefinite matrices, a semigroup containing all bounded ratios is given. This allows the complete determination of the semigroup of bounded ratios for 4-by-4 positive definite matrices, whose 46 generators include ratios not implied by Hadamard-Fischer and ratios not bounded by 1. For n > 4 it is shown that the containment of semigroups is strict, but a generalization of nullity patterns, of which one example is given, is conjectured to provide a finite determination of all bounded ratios.
Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n x n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which in ertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, and investigate restrictions on the inertia set of any graph.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا