ﻻ يوجد ملخص باللغة العربية
Zero forcing is a combinatorial game played on a graph with a goal of turning all of the vertices of the graph black while having to use as few unforced moves as possible. This leads to a parameter known as the zero forcing number which can be used to give an upper bound for the maximum nullity of a matrix associated with the graph. We introduce a new variation on the zero forcing game which can be used to give an upper bound for the maximum nullity of a matrix associated with a graph that has $q$ negative eigenvalues. This gives some limits to the number of positive eigenvalues that such a graph can have and so can be used to form lower bounds for the inertia set of a graph.
Connections between vital linkages and zero forcing are established. Specifically, the notion of a rigid linkage is introduced as a special kind of unique linkage and it is shown that spanning forcing paths of a zero forcing process form a spanning r
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity / minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph o
Power domination in graphs arises from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A power dominating set of a graph is a set of vertices that observes every vertex in the graph,
Given a graph $G$, one may ask: What sets of eigenvalues are possible over all weighted adjacency matrices of $G$? (The weight of an edge is positive or negative, while the diagonal entries can be any real numbers.) This is known as the Inverse Eigen
Zero forcing is a combinatorial game played on a graph where the goal is to start with all vertices unfilled and to change them to filled at minimal cost. In the original variation of the game there were two options. Namely, to fill any one single ve