ترغب بنشر مسار تعليمي؟ اضغط هنا

92 - F. Alzina , H. Tao , J. Moser 2010
We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the $p$ doping levels as inferred from the blue shift of the 2$D$ and $G$ peak frequencies, without int roducing significant disorder. The two-phonon 2$D$ and 2$D$ Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2$D$ to 2$D$ intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2$D$ and 2$D$ intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability.
214 - J. Moser , H. Tao , S. Roche 2010
We present a magneto-transport study of graphene samples into which a mild disorder was introduced by exposure to ozone. Unlike the conductivity of pristine graphene, the conductivity of graphene samples exposed to ozone becomes very sensitive to tem perature: it decreases by more than 3 orders of magnitude between 100K and 1K. By varying either an external gate voltage or temperature, we continuously tune the transport properties from the weak to the strong localization regime. We show that the transition occurs as the phase coherence length becomes comparable to the localization length. We also highlight the important role of disorder-enhanced electron-electron interaction on the resistivity.
104 - H. Tao , A. C. Strikwerda , K. Fan 2008
We have fabricated resonant terahertz metamaterials on free standing polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5 micron yielding robust large-area metamaterials which are easily wrapped into cylinders with a radius o f a few millimeters. Our results provide a path forward for creating multi-layer non-planar metamaterials at terahertz frequencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا