ترغب بنشر مسار تعليمي؟ اضغط هنا

We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and rando mly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.
We report on pure-quantum-state polariton condensates in optical annular traps. The study of the underlying mechanism reveals that the polariton wavefunction always coalesces in a single pure-quantum-state that, counter-intuitively, is always the upp ermost confined state with the highest overlap to the exciton reservoir. The tunability of such states combined with the short polariton lifetime allows for ultrafast transitions between coherent mesoscopic wavefunctions of distinctly different symmetries rendering optically confined polariton condensates a promising platform for applications such as many-body quantum circuitry and continuous-variable quantum processing.
We demonstrate, both experimentally and theoretically, a new phenomenon: the presence of dissipative coupling in the system of driven bosons. This is evidenced for a particular case of externally excited spots of exciton-polariton condensates in semi conductor microcavities. We observe that for two spatially separated condensates the dissipative coupling leads to the phase locking, either in-phase or out-of-phase, between the condensates. The effect depends on the distance between the condensates. For several excited spots, we observe the appearance of spontaneous vorticity in the system.
We investigate the propagation and scattering of polaritons in a planar GaAs microcavity in the linear regime under resonant excitation. The propagation of the coherent polariton wave across an extended defect creates phase and intensity patterns wit h identical qualitative features previously attributed to dark and half-dark solitons of polaritons. We demonstrate that these features are observed for negligible nonlinearity (i.e., polariton-polariton interaction) and are, therefore, not sufficient to identify dark and half-dark solitons. A linear model based on the Maxwell equations is shown to reproduce the experimental observations.
We demonstrate experimentally the condensation of exciton-polaritons through optical trapping. The non-resonant pump profile is shaped into a ring and projected to a high quality factor microcavity where it forms a 2D repulsive optical potential orig inating from the interactions of polaritons with the excitonic reservoir. Increasing the population of particles in the trap eventually leads to the emergence of a confined polariton condensate that is spatially decoupled from the decoherence inducing reservoir, before any build up of coherence on the excitation region. In a reference experiment, where the trapping mechanism is switched off by changing the excitation intensity profile, polariton condensation takes place for excitation densities more than two times higher and the resulting condensate is subject to a much stronger dephasing and depletion processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا