ترغب بنشر مسار تعليمي؟ اضغط هنا

256 - H. Oeschler 2011
Hadrons measured in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE detector have been identified using various techniques: the specific energy loss and the time-of flight information for charged pions, kaons and protons, the displ aced vertex resulting from their weak decay for K0, Lambda and Xi and the kink topology of decaying charged kaons. These various particle identification tools give the best separation at different momentum ranges and the results are combined to obtain spectra from pt = 100 MeV/c to 2.5 GeV/c. This allows to extract total yields. In detail we discuss the K/pi ratio together with previous measurements and we show a fit using a statistical approach.
135 - C. Hartnack , A.Sood , H. Oeschler 2010
Comparing K+ spectra at low transverse momenta for different symmetric collision systems at beam energies around 1 AGeV allows for a direct determination of both the strength of the K+ nucleus potential as well as of the K+N rescattering cross sectio n in a hadronic environment. Other little known or unknown quantities which enter the K+ dynamics, like the production cross sections of K+ mesons or the hadronic equation of state, do not spoil this signal as they cancel by using ratios of spectra. This procedure is based on transport model calculations using the Isospin Quantum Molecular Dynamics (IQMD) model which describes the available data quantitatively.
Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extra polated to LHC energy. Particular attention is paid to demonstrate that the chemical decoupling temperature is independent of the system size. In the energy regime investigated so far, strangeness production in pp interactions is strongly influenced by the canonical suppression effects. At LHC energies, this influence might be reduced. Particle ratios with particular sensitivity to canonical effects are indicated. Secondly, the relation between the strangeness production and the charged-particle multiplicity in pp interactions is investigated. In this context the multiplicity dependence studied at Tevatron is of particular interest. There, the trend in relative strangeness production known from centrality dependent heavy-ion collisions is not seen in multiplicity selected pp interactions. However, the conclusion from the Tevatron measurements is based on rather limited data samples with low statistics and number of observables. We argue, that there is an absolute need at LHC to measure strangeness production in events with different multiplicities to possibly disentangle relations and differences between particle production in pp and heavy-ion collisions.
A thermal-model analysis of particle production of p-p collisions at sqrt(s) = 17 GeV using the latest available data is presented. The sensitivity of model parameters on data selections and model assumptions is studied. The system-size dependence of thermal parameters and recent differences in the statistical model analysis of p-p collisions at the super proton synchrotron (SPS) are discussed. It is shown that the temperature and strangeness undersaturation factor depend strongly on kaon yields which at present are still not well known experimentally. It is conclude, that within the presently available data at the SPS it is rather unlikely that the temperature in p-p collisions exceeds significantly that expected in central collisions of heavy ions at the same energy.
The statistical model assuming chemical equilibriumand local strangeness conservation describes most of the observed features of strange particle production from SIS up to RHIC. Deviations are found as the maximum in the measured K+/pi+ ratio is much sharper than in the model calculations. At the incident energy of the maximum, the statistical model shows that freeze out changes regime from one being dominated by baryons at the lower energies toward one being dominated by mesons. It will be shown how deviations from the usual freeze-out curve influence the various particle ratios. Furthermore, other observables exhibit also changes just in this energy regime.
44 - H. Oeschler 2009
The production of K+ and K- mesons below and at the NN threshold is summarized, based on a comparison of data with transport model calculations. K+ mesons are created in associate production together with hyperons (e.g. Lambda) in multi-step processe s involving Delta resonances. These processes occur mainly during the high-density phase of the collision and this makes the K+ an ideal tool to extract the stiffness of the nuclear equation of state, found to be rather soft with a compressibility modulus K below 240 MeV. In contrast, the major part of K- mesons are produced via strangeness exchange. Most of the created K- are absorbed and the surviving ones are emitted quite late and at low densities.
We analyze recent data on particle production yields obtained in p-p collisions at SPS and RHIC energies within the statistical model. We apply the model formulated in the canonical ensemble and focus on strange particle production. We introduce diff erent methods to account for strangeness suppression effects and discuss their phenomenological verification. We show that at RHIC the midrapidity data on strange and multistrange particle multiplicity can be successfully described by the canonical statistical model with and without an extra suppression effects. On the other hand, SPS data integrated over the full phase-space require an additional strangeness suppression factor that is beyond the conventional canonical model. This factor is quantified by the strangeness saturation parameter or strangeness correlation volume. Extrapolating all relevant thermal parameters from SPS and RHIC to LHC energy we present predictions of the statistical model for particle yields in p-p collisions at sqrt(s) = 14TeV. We discuss the role and the influence of a strangeness correlation volume on particle production in p-p collisions at LHC.
Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.
The system-size dependence of particle production in heavy-ion collisions at the top SPS energy is analyzed in terms of the statistical model. A systematic comparison is made of two suppression mechanisms that quantify strange particle yields in ultr a-relativistic heavy-ion collisions: the canonical model with strangeness correlation radius determined from the data and the model formulated in the canonical ensemble using chemical off-equilibrium strangeness suppression factor. The system-size dependence of the correlation radius and the thermal parameters are obtained for p-p, C-C, Si-Si and Pb-Pb collisions at sqrt(s_NN) = 17.3 AGeV. It is shown that on the basis of a consistent set of data there is no clear difference between the two suppression patterns. In the present study the strangeness correlation radius was found to exhibit a rather weak dependence on the system size.
133 - I Kraus , J Cleymans , H Oeschler 2007
Predictions for particle production at LHC are discussed in the context of the statistical model. Moreover, the capability of particle ratios to determine the freeze-out point experimentally is studied, and the best suited ratios are specified. Final ly, canonical suppression in p-p collisions at LHC energies is discussed in a cluster framework. Measurements with p-p collisions will allow us to estimate the strangeness correlation volume and to study its evolution over a large range of incident energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا