ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Hubble Space Telescope optical coronagraphic polarization imaging observations of the dusty debris disk HD 61005. The scattered light intensity image and polarization structure reveal a highly inclined disk with a clear asymmetric, swept b ack component, suggestive of significant interaction with the ambient interstellar medium. The combination of our new data with the published 1.1 micron discovery image shows that the grains are blue scattering with no strong color gradient as a function of radius, implying predominantly sub-micron sized grains. We investigate possible explanations that could account for the observed swept back, asymmetric morphology. Previous work has suggested that HD 61005 may be interacting with a cold, unusually dense interstellar cloud. However, limits on the intervening interstellar gas column density from an optical spectrum of HD 61005 in the Na I D lines render this possibility unlikely. Instead, HD 61005 may be embedded in a more typical warm, low-density cloud that introduces secular perturbations to dust grain orbits. This mechanism can significantly distort the ensemble disk structure within a typical cloud crossing time. For a counterintuitive relative flow direction--parallel to the disk midplane--we find that the structures generated by these distortions can very roughly approximate the HD 61005 morphology. Future observational studies constraining the direction of the relative interstellar medium flow will thus provide an important constraint for future modeling. Independent of the interpretation for HD 61005, we expect that interstellar gas drag likely plays a role in producing asymmetries observed in other debris disk systems, such as HD 15115 and Delta-Velorum.
We present the first detection and mapping of the HD 32297 debris disk at 1.3 mm with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). With a sub-arcsecond beam, this detection represents the highest angular resolution (sub)mm de bris disk observation made to date. Our model fits to the spectral energy distribution from the CARMA flux and new Spitzer MIPS photometry support the earlier suggestion that at least two, possibly three, distinct grain populations are traced by the current data. The observed millimeter map shows an asymmetry between the northeast and southwest disk lobes, suggesting large grains may be trapped in resonance with an unseen exoplanet. Alternatively, the observed morphology could result from the recent breakup of a massive planetesimal. A similar-scale asymmetry is also observed in scattered light but not in the mid-infrared. This contrast between asymmetry at short and long wavelengths and symmetry at intermediate wavelengths is in qualitative agreement with predictions of resonant debris disk models. With resolved observations in several bands spanning over three decades in wavelength, HD 32297 provides a unique testbed for theories of grain and planetary dynamics, and could potentially provide strong multi-wavelength evidence for an exoplanetary system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا