ترغب بنشر مسار تعليمي؟ اضغط هنا

In this brief note we argue that a dyonic generalization of the Emparan-Teo dihole solution is described by a static diagonal metric and therefore, contrary to the claim made in a recent paper by Cabrera-Munguia et al., does not involve any non-vanishing global angular momentum and rotating charges.
We consider resonant scatterers with large scattering cross-sections in graphene that are produced by a gated disk or a vacancy, and show that a gated ring can be engineered to produce an efficient electron cloak. We also demonstrate that this same s cheme can be applied to tune the direction of electron flow. Our analysis is based on a partial-wave expansion of the electronic wave-functions in the continuum approximation, described by the Dirac equation. Using a symmetrized version of the massless Dirac equation, we derive a general condition for the cloaking of a scatterer by a potential with radial symmetry. We also perform tight-binding calculations to show that our findings are robust against the presence of disorder in the gate potential.
We comment on the role of the Cartesian-type Kerr-Schild coordinates in developing a faulty maximal extension of the Kerr-Newman solution in the well-known paper of Carter.
Gaussian curvature of the two-surface r=0, t=const is calculated for the Kerr-de Sitter and Kerr-Newman-de Sitter solutions, yielding non-zero analytical expressions for both the cases. The results obtained, on the one hand, exclude the possibility f or that surface to be a disk and, on the other hand, permit one to establish a correct geometrical interpretation of that surface for each of the two solutions.
In this paper we argue that the well-known maximal extensions of the Kerr and Kerr-Newman spacetimes characterized by a specific gluing (on disks) of two asymptotically flat regions with ADM masses of opposite signs are physically inconsistent and ac tually non-analytic. We also discover a correct geometrical interpretation of the surface $r=0$, $t={rm const}$ - a dicone in the case of the Kerr solution and a more sophisticated surface of non-zero Gaussian curvature in the case of the Kerr-Newman solution - which suggests that the problem of constructing the maximal analytic extensions for these stationary spacetimes is likely to be performed within the models with only one asymptotically flat region, in which case a smooth crossing of the ring singularity becomes possible, for instance, after carrying out an appropriate transformation of the radial coordinate.
The study of open clusters and their short period variable stars is fundamental in stellar evolution. Because the cluster members are formed in almost the same physical conditions, they share similar stellar properties such age and chemical compositi on. The assumption of common age, metallicity and distance impose strong constraints when modeling an ensemble of short period pulsators belonging to open clusters (e.g. Fox Machado et al., 2006). Very recently, Luo et al. (2009) carried out a search for variable stars in the direction of NGC 6811 with CCD photometry in B and V bands. They detected a total of sixteen variable stars. Among these variables, twelve were catalogued as $delta$ {it Scuti} stars, while no variability type was assigned to the remaining stars. In this paper we present $uvbybeta$ photoelectric photometry for the variable stars in the direction of NGC 6811.
From $uvby-beta$ photometry of the open clusters NGC 6811 (75 stars), and NGC 6830 (19 stars) we were able to determine membership of the stars to each cluster, and fix the age and reddening for each. Since several short period stars have recently be en found, we have carried out a study of these variables.
Rarita-Schwinger (RS) quantum free field is reexamined in the context of deformation quantization. It is found out that the subsidiary condition does not introduce any change either in the Wigner function or in other aspects of the deformation quanti zation formalism, in relation to the Dirac field case. This happens because the vector structure of the RS field imposes constraints on the space of wave function solutions and not on the operator structure. The RS propagator was also calculated within this formalism.
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the $theta$-e xpansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in $theta$ for the Plebanski action is explicitly obtained.
A classification of D-branes in Type IIB Op^- orientifolds and orbifolds in terms of Real and equivariant KK-groups is given. We classify D-branes intersecting orientifold planes from which are recovered some special limits as the spectrum for D-bran es on top of Type I Op^- orientifold and the bivariant classification of Type I D-branes. The gauge group and transformation properties of the low energy effective field theory living in the corresponding unstable D-brane system are computed by extensive use of Clifford algebras. Some speculations about the existence of oth
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا